Home
Class 11
MATHS
underset(xrarr0)lim (sqrt(1+x^2)-sqrt(1+...

`underset(xrarr0)lim (sqrt(1+x^2)-sqrt(1+x))/(sqrt(1+x^2)+sqrt(1+x))`

Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    JBD PUBLICATION|Exercise EXAMPLE|35 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    JBD PUBLICATION|Exercise EXAMPLE|18 Videos
  • LINEAR INEQUALITIES

    JBD PUBLICATION|Exercise EXAMPLE|20 Videos

Similar Questions

Explore conceptually related problems

Evaluate: underset(xrarr0)lim (sqrt(1+2x)-sqrt(1-2x))/(x)

underset(xrarr0)lim (sqrt(1+x)-1)/x is equal to:

int((sqrt(x)+1)(x^2-sqrt(x)))/(xsqrt(x)+x+sqrt(x))dx

If y = tan^(-1)((sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))) , then show that (dy)/(dx) = x/(sqrt(1 - x^4))

Differentiate tan^(-1) ((sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x))) w.r.t. x .

Differentiatie tan^-1((sqrt(1+x^2) - sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) w.r.t. sin^-1((2x)/(1+x^2))

Evaluate: underset(xrarr5)lim (1-sqrt(x-4))/5 .

Differentiate tan^-1{( sqrt (1+x^2) +sqrt (1-x^2))/ (sqrt(1+x^2)-sqrt(1-x^2))} w.r.t.x