Home
Class 12
MATHS
Prove that sum(k=0)^n ^nCk sinKx.cos(n-K...

Prove that `sum_(k=0)^n ^nC_k sinKx.cos(n-K)x=2^(n-1)sin nx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(r=0)^(n)C_(r)sin rx cos(n-r)x=2^(n-1)sin(nx)

Prove that sum_ (k = 0) ^ (n) nC_ (k) sin Kx.cos (nK) x = 2 ^ (n-1) sin nx

Show that sum_(k =0)^(n) C_(k) *sin (kx) cos (n-k) x = 2^(n-1)sin n x where C_(r )= ""^(n)C_(r )

Prove that Sigma_(K=0)^(n) ""^nC_(k) sin K x cos (n-K)x = 2^(n-1) sin x.

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

Prove that sum_(r=0)^(n) ""^(n)C_(r )sin rx. cos (n-r)x = 2^(n-1) xx sin nx .

If a_1,a_2,……….,a_(n+1) are in A.P. prove that sum_(k=0)^n ^nC_k.a_(k+1)=2^(n-1)(a_1+a_(n+1))

Prove that sum_(k=1)^(n-1) ""^(n)C_(k)[cos k x. cos (n+k)x+sin(n-k)x.sin(2n-k)x]=(2^(n)-2)cos nx .

Prove that sum_(k=1)^(n-1) ""^(n)C_(k)[cos k x. cos (n+k)x+sin(n-k)x.sin(2n-k)x]=(2^(n)-2)cos nx .

Prove that sum_(k=1)^(n-1) ""^(n)C_(k)[cos k x. cos (n+k)x+sin(n-k)x.sin(2n-k)x]=(2^(n)-2)cos nx .