Home
Class 12
MATHS
veca , vecb , vecc are mutually bot unit...

`veca , vecb , vecc` are mutually `bot` unit vectors equally inclined to `veca+vecb+vecc` at an angle `theta` then find the value of `36cos^2(2theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 36 \cos^2(2\theta) \) given that the vectors \( \vec{a}, \vec{b}, \vec{c} \) are mutually perpendicular unit vectors that are equally inclined to \( \vec{a} + \vec{b} + \vec{c} \) at an angle \( \theta \). ### Step-by-Step Solution: 1. **Understanding the Vectors**: Since \( \vec{a}, \vec{b}, \vec{c} \) are mutually perpendicular unit vectors, we can represent them as: \[ \vec{a} = \hat{i}, \quad \vec{b} = \hat{j}, \quad \vec{c} = \hat{k} \] 2. **Finding the Sum of Vectors**: The sum of these vectors is: \[ \vec{a} + \vec{b} + \vec{c} = \hat{i} + \hat{j} + \hat{k} \] 3. **Calculating the Magnitude of the Sum**: The magnitude of \( \vec{a} + \vec{b} + \vec{c} \) is: \[ |\vec{a} + \vec{b} + \vec{c}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \] 4. **Using the Dot Product**: The angle \( \theta \) between \( \vec{a} \) and \( \vec{a} + \vec{b} + \vec{c} \) can be found using the dot product: \[ \vec{a} \cdot (\vec{a} + \vec{b} + \vec{c}) = |\vec{a}| |\vec{a} + \vec{b} + \vec{c}| \cos \theta \] Here, \( |\vec{a}| = 1 \) and \( |\vec{a} + \vec{b} + \vec{c}| = \sqrt{3} \): \[ \vec{a} \cdot (\vec{a} + \vec{b} + \vec{c}) = \hat{i} \cdot (\hat{i} + \hat{j} + \hat{k}) = 1 \] Therefore, \[ 1 = 1 \cdot \sqrt{3} \cos \theta \implies \cos \theta = \frac{1}{\sqrt{3}} \] 5. **Finding \( \cos(2\theta) \)**: We use the double angle formula: \[ \cos(2\theta) = 2\cos^2(\theta) - 1 \] Substituting \( \cos \theta = \frac{1}{\sqrt{3}} \): \[ \cos^2(\theta) = \left(\frac{1}{\sqrt{3}}\right)^2 = \frac{1}{3} \] Thus, \[ \cos(2\theta) = 2 \cdot \frac{1}{3} - 1 = \frac{2}{3} - 1 = -\frac{1}{3} \] 6. **Calculating \( \cos^2(2\theta) \)**: Now we find \( \cos^2(2\theta) \): \[ \cos^2(2\theta) = \left(-\frac{1}{3}\right)^2 = \frac{1}{9} \] 7. **Final Calculation**: Finally, we compute \( 36 \cos^2(2\theta) \): \[ 36 \cos^2(2\theta) = 36 \cdot \frac{1}{9} = 4 \] ### Conclusion: The value of \( 36 \cos^2(2\theta) \) is \( \boxed{4} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are unit vectors such that veca. Vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

If veca,vecb,vecc are mutually perpendicular vectors of equal magnitude show that veca+vecb+vecc is equally inclined to veca, vecb and vecc

If veca and vecb are unit vectors inclined at an angle theta , then the value of |veca-vecb| is

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

Let veca, vecb, vecc be three unit vectors and veca.vecb=veca.vecc=0 . If the angle between vecb and vecc is pi/3 then find the value of |[veca vecb vecc]|

Let veca, vecb and vecc be non - coplanar unit vectors, equally inclined to one another at an angle theta . If veca xx vecb + vecb xx vecc = p veca + q vecb + rvecc , find scalars p, q and r in terms of theta .

veca, vecb and vecc are unit vecrtors such that |veca + vecb+ 3vecc|=4 Angle between veca and vecb is theta_(1) , between vecb and vecc is theta_(2) and between veca and vecb varies [pi//6, 2pi//3] . Then the maximum value of cos theta_(1)+3cos theta_(2) is

Let veca vecb and vecc be pairwise mutually perpendicular vectors, such that |veca|=1, |vecb|=2, |vecc| = 2 , the find the length of veca +vecb + vecc .