Home
Class 12
MATHS
abs(z*omega)=1 ,arg(z)-arg(omega)=(3pi)/...

`abs(z*omega)=1 ,arg(z)-arg(omega)=(3pi)/2`. Find the `arg[(1-2barzomega)/(1+3barzomega)]`

A

`pi/4`

B

`-pi/4`

C

`(3pi)/4`

D

`-(3pi)/4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the argument of the complex expression given the conditions on \( z \) and \( \omega \). Let's break this down step by step. ### Step 1: Understand the Given Conditions We are given: 1. \( |z \cdot \omega| = 1 \) 2. \( \arg(z) - \arg(\omega) = \frac{3\pi}{2} \) From the first condition, we can deduce that: - \( |z| \cdot |\omega| = 1 \) - This implies \( |z| = \frac{1}{|\omega|} \). ### Step 2: Express \( z \) and \( \omega \) Let: - \( z = r e^{i\theta} \) where \( r = |z| \) and \( \theta = \arg(z) \). - From the condition \( |z| = \frac{1}{|\omega|} \), we can express \( \omega \) as: \[ \omega = \frac{1}{r} e^{i(\theta - \frac{3\pi}{2})} \] ### Step 3: Find \( \bar{z} \) and \( \bar{\omega} \) The conjugates are: - \( \bar{z} = r e^{-i\theta} \) - \( \bar{\omega} = r e^{i(\theta - \frac{3\pi}{2})} \) ### Step 4: Calculate \( z \bar{\omega} \) Now, we calculate \( z \bar{\omega} \): \[ z \bar{\omega} = (r e^{i\theta}) \left( \frac{1}{r} e^{i(\theta - \frac{3\pi}{2})} \right) = e^{i\theta} e^{i(\theta - \frac{3\pi}{2})} = e^{i(2\theta - \frac{3\pi}{2})} \] ### Step 5: Substitute into the Expression We need to find: \[ \arg\left(\frac{1 - 2\bar{z}\omega}{1 + 3\bar{z}\omega}\right) \] Calculating \( \bar{z} \omega \): \[ \bar{z} \omega = (r e^{-i\theta}) \left( \frac{1}{r} e^{i(\theta - \frac{3\pi}{2})} \right) = e^{-i\theta} e^{i(\theta - \frac{3\pi}{2})} = e^{-i\frac{3\pi}{2}} = i \] ### Step 6: Substitute \( \bar{z} \omega \) into the Expression Now substituting \( \bar{z} \omega = i \): \[ \frac{1 - 2i}{1 + 3i} \] ### Step 7: Multiply by the Conjugate To simplify, multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(1 - 2i)(1 - 3i)}{(1 + 3i)(1 - 3i)} = \frac{1 - 3i - 2i + 6}{1 + 9} = \frac{7 - 5i}{10} \] ### Step 8: Find the Argument Now we find the argument of \( \frac{7 - 5i}{10} \): - The argument is given by \( \tan^{-1}\left(\frac{-5}{7}\right) \). - Since \( 7 > 0 \) and \( -5 < 0 \), this point lies in the fourth quadrant. Thus, the argument is: \[ \arg\left(\frac{7 - 5i}{10}\right) = \tan^{-1}\left(-\frac{5}{7}\right) \] ### Final Step: Adjust for Quadrant The angle in the fourth quadrant can be expressed as: \[ -\tan^{-1}\left(\frac{5}{7}\right) \] ### Conclusion The final answer for the argument is: \[ \arg\left(\frac{1 - 2\bar{z}\omega}{1 + 3\bar{z}\omega}\right) = -\tan^{-1}\left(\frac{5}{7}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If Z and omega are two complex numbers such that |zomega|=1andarg(z)-arg(omega)=(3pi)/(2) , then arg ((1-2bar(z)omega)/(1+3bar(z)omega)) is : (Here arg(z) denotes the principal argument of complex number z)

[" 1.If "z" and "omega" are two non-zero complex numbers such that "],[|z omega|=1" and "Arg(z)-Arg(omega)=(pi)/(2)," then "bar(z)omega" is equal to "]

if omega=(-1+sqrt(3)i)/(2), then arg(omega^(2)) is

z=-1+sqrt3i , omega is complex number such that abs(zomega)=1 , arg(z)-arg(w)=pi/2 .Find area of triangle made

If -pi

Suppose arg (z) = - 5 pi//13 , then arg((z + bar(z))/(1+z bar(z))) is

Let z and omega be complex numbers such that |z|=|omega| and arg (z) dentoe the principal of z. Statement-1: If argz+ arg omega=pi , then z=-baromega Statement -2: |z|=|omega| implies arg z-arg baromega=pi , then z=-baromega

If z and w are two non - zero complex numbers such that |zw|=1 and arg(z)-arg(w)=(pi)/(2), then the value of 5ibarzw is equal to

if arg(z+a)=(pi)/(6) and arg(z-a)=(2 pi)/(3) then