Home
Class 12
MATHS
The number of solution of tan^-1(sqrt(x(...

The number of solution of `tan^-1(sqrt(x(x-1)))+sin^-1(sqrt(x^2+x+1))=pi/2` are

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2) is a.zero b.one c.two d.infinite

The number of real solution of cot^(-1)sqrt(x(x+3))+sin^(-1)sqrt(x^(2)+3x+1)=(pi)/(2) is /are

The number of real solution of cot^(-1)sqrt(x(x+4))+cos^(-1)sqrt(x^(2)+4x+1)=(pi)/(2) is equal to

The number of real roots of the equation tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(4) is :

The number of solutions for the equation 2 sin^(-1)(sqrt(x^(2) - x + 1)) + cos^(-1)(sqrt(x^(2) - x) )= (3pi)/(2) is