Home
Class 12
MATHS
a(ij)={(1,,i=j),(-x,,abs(i-j)=1),(2x+1,,...

`a_(ij)={(1,,i=j),(-x,,abs(i-j)=1),(2x+1,,otherwise):} , A={a_(ij)}_(3xx3) f(x)=det(A)`. then sum of maximum and minimum vaues of f(x) is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start by constructing the matrix \( A \) based on the given conditions for \( a_{ij} \): 1. **Matrix Construction**: - For \( i = j \) (diagonal elements), \( a_{ij} = 1 \). - For \( |i - j| = 1 \) (adjacent elements), \( a_{ij} = -x \). - For all other cases, \( a_{ij} = 2x + 1 \). Thus, the \( 3 \times 3 \) matrix \( A \) can be constructed as follows: \[ A = \begin{pmatrix} 1 & -x & 2x + 1 \\ -x & 1 & -x \\ 2x + 1 & -x & 1 \end{pmatrix} \] 2. **Finding the Determinant**: We need to find the determinant of matrix \( A \), denoted as \( f(x) = \det(A) \). Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \det(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where \( A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \). For our matrix \( A \): - \( a = 1, b = -x, c = 2x + 1 \) - \( d = -x, e = 1, f = -x \) - \( g = 2x + 1, h = -x, i = 1 \) Now substituting these values into the determinant formula: \[ f(x) = 1 \cdot (1 \cdot 1 - (-x)(-x)) - (-x) \cdot (-x \cdot 1 - (-x)(2x + 1)) + (2x + 1) \cdot (-x \cdot -x - 1 \cdot (2x + 1)) \] Calculating each term step-by-step: - First term: \( 1 \cdot (1 - x^2) = 1 - x^2 \) - Second term: \( -(-x) \cdot (-x - (-x)(2x + 1)) = x \cdot (-x + 2x^2 + x) = x(2x^2) = 2x^3 \) - Third term: \( (2x + 1) \cdot (x^2 - (2x + 1)) = (2x + 1)(x^2 - 2x - 1) \) Now simplifying the third term: \[ (2x + 1)(x^2 - 2x - 1) = 2x^3 - 4x^2 - 2x + x^2 - 2x - 1 = 2x^3 - 3x^2 - 4x - 1 \] Combining all terms together: \[ f(x) = (1 - x^2) + 2x^3 + (2x^3 - 3x^2 - 4x - 1) \] This simplifies to: \[ f(x) = 4x^3 - 4x^2 - 4x \] 3. **Finding Maximum and Minimum Values**: To find the maximum and minimum values of \( f(x) \), we differentiate \( f(x) \): \[ f'(x) = 12x^2 - 8x - 4 \] Setting the derivative equal to zero to find critical points: \[ 12x^2 - 8x - 4 = 0 \] Dividing through by 4: \[ 3x^2 - 2x - 1 = 0 \] Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 3 \cdot (-1)}}{2 \cdot 3} = \frac{2 \pm \sqrt{4 + 12}}{6} = \frac{2 \pm 4}{6} \] This gives us: \[ x = 1 \quad \text{and} \quad x = -\frac{1}{3} \] 4. **Evaluating \( f(x) \) at Critical Points**: Now we evaluate \( f(x) \) at these critical points: - For \( x = 1 \): \[ f(1) = 4(1)^3 - 4(1)^2 - 4(1) = 4 - 4 - 4 = -4 \] - For \( x = -\frac{1}{3} \): \[ f\left(-\frac{1}{3}\right) = 4\left(-\frac{1}{3}\right)^3 - 4\left(-\frac{1}{3}\right)^2 - 4\left(-\frac{1}{3}\right) \] Calculating each term: \[ = 4\left(-\frac{1}{27}\right) - 4\left(\frac{1}{9}\right) + \frac{4}{3} \] \[ = -\frac{4}{27} - \frac{12}{27} + \frac{36}{27} = \frac{20}{27} \] 5. **Finding the Sum of Maximum and Minimum Values**: Now we find the maximum and minimum values: - Minimum value: \( -4 \) - Maximum value: \( \frac{20}{27} \) Thus, the sum of the maximum and minimum values is: \[ \text{Sum} = -4 + \frac{20}{27} = -\frac{108}{27} + \frac{20}{27} = -\frac{88}{27} \] **Final Answer**: The sum of the maximum and minimum values of \( f(x) \) is \( -\frac{88}{27} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A = [a_(ij)] be a 3 xx 3 matrix, where a_(ij)={{:(1,",",ifi=j),(-x,",",if|i-j|=1),(2x+1,",","otherwise"):} Let a function f : R to R be defined as f(x) = det (A). Then the sum of maximum and minimum values of f on R is equal to:

If A=[a_(ij)]_(2xx3) , difined as a_(ij)=i^(2)-j+1 , then find matrix A.

If matrix A=[a_(ij)]_(3xx2) and a_(ij)=(3i-2j)^(2) , then find matrix A.

If a_(j)=0(i!=j) and a_(ij)=4(i=j), then the matrix A=[a_(ij)]_(n xx n) is a matrix

IfA=[a_(ij)]_(2xx2) such that a_(ij)=i-j+3, then find A.

If A = [a_(ij)]_(2xx2) , where a_(ij) = ((i + 2j)^(2))/(2 ) , then A is equal to

If A=[a_(ij)]_(2xx2)" where "a_(ij)=2i+j," then :"A=

If A=|a_(ij)]_(2 xx 2) where a_(ij) = i-j then A =………….

Write down the matrix A=[a_(ij)]_(2xx3), where a_ij=2i-3j