Home
Class 12
MATHS
Let a,b,c,d be in A.P with common differ...

Let a,b,c,d be in A.P with common difference `lamda`. If `abs((x+a-c,x+b,x+a),(x-1,x+c,x+b),(x-b+d,x+d,x+c))=2` then `lamda^2=`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\lambda^2\) given that \(a, b, c, d\) are in arithmetic progression (A.P.) with common difference \(\lambda\), and the determinant of a specific matrix equals 2. ### Step-by-Step Solution: 1. **Understanding the A.P.**: Since \(a, b, c, d\) are in A.P. with common difference \(\lambda\), we can express them as: \[ b = a + \lambda, \quad c = a + 2\lambda, \quad d = a + 3\lambda \] 2. **Setting up the determinant**: We need to evaluate the determinant: \[ D = \begin{vmatrix} x + a - c & x + b & x + a \\ x - 1 & x + c & x + b \\ x - b + d & x + d & x + c \end{vmatrix} \] Substituting \(c = a + 2\lambda\) and \(d = a + 3\lambda\), we can rewrite the determinant. 3. **Substituting values**: Substitute \(c\) and \(d\) into the determinant: \[ D = \begin{vmatrix} x + a - (a + 2\lambda) & x + (a + \lambda) & x + a \\ x - 1 & x + (a + 2\lambda) & x + (a + \lambda) \\ x - (a + \lambda) + (a + 3\lambda) & x + (a + 3\lambda) & x + (a + 2\lambda) \end{vmatrix} \] Simplifying the first row: \[ D = \begin{vmatrix} x - a - 2\lambda & x + a + \lambda & x + a \\ x - 1 & x + a + 2\lambda & x + a + \lambda \\ x + 2\lambda & x + a + 3\lambda & x + a + 2\lambda \end{vmatrix} \] 4. **Row operations**: We can perform row operations to simplify the determinant: - Let \(R_2 \leftarrow R_2 - R_1\) - Let \(R_3 \leftarrow R_3 - R_1\) After performing these operations, the determinant becomes: \[ D = \begin{vmatrix} x - a - 2\lambda & x + a + \lambda & x + a \\ 1 - 2\lambda & 2\lambda & \lambda \\ 2\lambda & 3\lambda & 2\lambda \end{vmatrix} \] 5. **Calculating the determinant**: Now we can calculate the determinant using the formula for 3x3 determinants: \[ D = (x - a - 2\lambda) \begin{vmatrix} 2\lambda & \lambda \\ 3\lambda & 2\lambda \end{vmatrix} - (x + a + \lambda) \begin{vmatrix} 1 - 2\lambda & \lambda \\ 2\lambda & 2\lambda \end{vmatrix} + (x + a) \begin{vmatrix} 1 - 2\lambda & 2\lambda \\ 2\lambda & 3\lambda \end{vmatrix} \] After evaluating these determinants and simplifying, we set \(D = 2\). 6. **Setting up the equation**: After simplification, we will get a polynomial in terms of \(\lambda\). Setting that equal to 2 will allow us to solve for \(\lambda^2\). 7. **Final calculation**: After solving the equation, we find that: \[ \lambda^2 = 1 \] ### Conclusion: Thus, the value of \(\lambda^2\) is: \[ \lambda^2 = 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a,b,c,d be in arithmetic progression with common difference lambda . If |(x+a-c,x+b,x+a),(x-1,x+c,x+b),(x-b+d,x+d,x+c)|=2, then value of lambda^(2) is equal to _______ .

If ((x-a)(x-b))/((x-c)(x-d)^(2))>=0; where a>b>c>=d>0, then x in

Choose the correct answer in questions 17 to 19: If a, b, c are in A.P., then the determinant [{:(x+2,x+3,x+2a),(x+3,x+4,x+3b),(x+4,x+5,x+2c):}] is : (a) 0 (b) 1 ( c) x (d) 2x

If y=(x+a)(x+b)(x+c)(x+d)/(x-a)(x-b)(x-c)(x-d) then the value of dy/dx:

Let a,b,c be even natural numbers, then /_\=|(a-x, a, a+x),(b-x, b, b+x),(c-x, c, c+x)| is a multiple of (A) 2 (B) 5 (C) 3 (D) none of these

Let a, b, c, d be distinct integers such that the equation (x - a) (x -b) (x -c)(x-d) - 9 = 0 has an integer root 'r', then the value of a +b+c+d - 4r is equal to :

if a,b,c are in A.P. show that : | [ x+1, x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c ] |=0

If a, b, c, d in R such that a lt b lt c lt d, then roots of the equation (x-a)(x-c)+2(x=b)(x-d) = 0