Home
Class 12
MATHS
veca*vecb=abs(vecaxxvecb) then abs(veca-...

`veca*vecb=abs(vecaxxvecb)` then `abs(veca-vecb)` is

A

`sqrt(a^2+b^2+sqrt2ab)`

B

`sqrt(a^2+b^2-sqrt(2ab))`

C

`sqrt(a^2+b^2+sqrt(2ab))`

D

`sqrt(a^2+b^2-sqrt2ab)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \vec{a} \cdot \vec{b} = |\vec{a} \times \vec{b}| \] ### Step 1: Use the definitions of dot and cross products We know that: - The dot product \(\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta\) - The magnitude of the cross product \(|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta\) ### Step 2: Set the two expressions equal From the given equation, we can equate the two expressions: \[ |\vec{a}| |\vec{b}| \cos \theta = |\vec{a}| |\vec{b}| \sin \theta \] ### Step 3: Cancel out the common terms Assuming \(|\vec{a}|\) and \(|\vec{b}|\) are not zero, we can divide both sides by \(|\vec{a}| |\vec{b}|\): \[ \cos \theta = \sin \theta \] ### Step 4: Solve for \(\theta\) This equation implies: \[ \tan \theta = 1 \] The angle \(\theta\) for which \(\tan \theta = 1\) is: \[ \theta = \frac{\pi}{4} \] ### Step 5: Find the value of \(|\vec{a} - \vec{b}|\) We use the formula for the magnitude of the difference of two vectors: \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2 \vec{a} \cdot \vec{b} \] ### Step 6: Substitute \(\vec{a} \cdot \vec{b}\) We substitute \(\vec{a} \cdot \vec{b}\) using the previously derived expression: \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2 |\vec{a}| |\vec{b}| \cos \left(\frac{\pi}{4}\right) \] Since \(\cos \left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\): \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2 |\vec{a}| |\vec{b}| \cdot \frac{1}{\sqrt{2}} \] ### Step 7: Simplify the expression This simplifies to: \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - \sqrt{2} |\vec{a}| |\vec{b}| \] ### Step 8: Take the square root Taking the square root of both sides gives us: \[ |\vec{a} - \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 - \sqrt{2} |\vec{a}| |\vec{b}|} \] ### Final Answer Thus, the final value of \(|\vec{a} - \vec{b}|\) is: \[ |\vec{a} - \vec{b}| = \sqrt{|\vec{a}|^2 + |\vec{b}|^2 - \sqrt{2} |\vec{a}| |\vec{b}|} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Given |veca|=|vecb|=1 and |veca+vecb|=sqrt(3) . If vecc be a vector such that vecc-veca-2vecb=3(vecaxxvecb) , then vecc.vecb is equal to

Show that, (veca-vecb)xx(veca+vecb) = 2(vecaxxvecb) .

If abs(veca)=2 ,abs(vecb)=5 , abs(vecaxxvecb)=8 then find value of abs(veca*vecb)

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)=vecc=0 then (vecaxxvecb)xxvecc is

If veca and vecb are vectors in space given by veca=(hati-2hatj)/(sqrt(5)) vecb=(2hati+hatj+3hatk)/(sqrt(14)) then the value of (2veca+vecb).[(vecaxxvecb)xx(veca-2vecb)] , is

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these

If vecA=(vecbxxvecc)/([vecb vecc vecc]), vecB=(veccxxveca)/([vecc veca vecb)], vecC=(vecaxxvecb)/([veca vecb vecc)] find [vecA vecB vecC]

If vecc=vecaxxvecb and vecb=veccxxveca then (A) veca.vecb=vecc^2 (B) vecc.veca.=vecb^2 (C) veca_|_vecb (D) veca||vecbxxvecc

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to