Home
Class 12
MATHS
The value of tan^(-1)x+cot^(-1)x is...

The value of `tan^(-1)x+cot^(-1)x` is

A

`(pi)/(2)`

B

`pi`

C

`-(pi)/(2)`

D

`-pi`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT MOST IMPORTANT QUESTIONS FOR PRACTICE (SECTION V)|8 Videos
  • INTEGRALS

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARD.S QUESTIONS FOR PRACTICE|98 Videos
  • LINEAR PROGRAMMING

    BETTER CHOICE PUBLICATION|Exercise Previous Years Board.s Questions For Practice|10 Videos

Similar Questions

Explore conceptually related problems

The value of cot (tan^-1 x + cot^-1 x) is equal to :

If x in R, find the value of cos(tan^-1 x + cot^-1 x)

Knowledge Check

  • The value of cot(tan^(-1)x+cot^(-1)x) is equal to

    A
    1
    B
    0
    C
    `-(pi)/(2)`
    D
    `(pi)/(2)`
  • The value of cot(sin^(-1)x) is

    A
    `sqrt(1+x^(2))//x`
    B
    `x/sqrt(1+x^(2))`
    C
    `1/x`
    D
    `sqrt(1-x^(2))/x`
  • The value of cot(sin^(-1)x) is

    A
    `(sqrt(1+x^(2)))/(x)`
    B
    `(x)/(sqrt(1+x^(2)))`
    C
    `(1)/(x)`
    D
    `sqrt(1-x)^(2)/(x)`
  • Similar Questions

    Explore conceptually related problems

    Evaluate int (tan^(-1)x + cot^(-1)x) dx

    Evaluate cot(tan^-1a +cot^-1a)

    Find the value of cos(tan^-1sqrtx+cot^-1sqrtx) , where x is a non negative real number.

    The value of int_(-2pi)^(5pi) cot^(-1)(tan x) dx is equal to

    Derivative of (tan^(-1) x + cot^(-1) x) w.r.t. x is