Home
Class 12
MATHS
By using properties of determinants, sh...

By using properties of determinants, show that : `|[1,a,a^2],[1,b,b^2],[1,c,c^2]| = (a-b)(b-c)(c-a)`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise SOLVED EXAMPLES (SECTION IV) |4 Videos
  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise SOLVED EXAMPLES (SECTION V) |9 Videos
  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise SOLVED EXAMPLES (SECTION II) (SHORT ANSWER TYPE QUESTIONS)|6 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARDS QUESTIONS FOR PRACTICE (MULTIPLE CHOICE QUESTIONS)|94 Videos
  • DIFFERENTIAL EQUATIONS

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARD.S QUESTIONS FOR PRACTICE|50 Videos

Similar Questions

Explore conceptually related problems

By using properties of determinants, show that : |[1,1,1],[a,b,c],[a^3,b^3,c^3]| = (a-b)(b-c)(c-a)(a+b+c)

Using the properties of determinant, show that : |[1,a+b,a^2+b^2],[1,b+c,b^2+c^2],[1,c+a,c^2+a^2]| = (a-b)(b-c)(c-a)

Using the properties of determinants show that : |[[1,1,1],[a^2,b^2,c^2],[a^3,b^3,c^3]]|=(a-b)(b-c)(c-a)(ab+bc+ca) .

Using the properties of determinants show that : |[[1, a^2+bc, a^3],[1,b^2+ac,b^3],[1,c^2+ab,c^3]]|=(a-b)(b-c)(c-a)(a^2+b^2+c^2)

Using the properties of determinants show that : |[[a^2, b^2, c^2],[bc,ca,ab],[a,b,c]]|=(a-b)(b-c)(c-a)(ab+bc+ca)

Using the properties of determinant, show that : |[a^2+1,ab,ac],[ab,b^2+1,bc],[ac,bc,c^2+1]| = 1+a^2+b^2+c^2

By using properties of determinants, Show that : {:|(0,a,-b),(-a,0,-c),(b,c,0)|=0

Prove that |[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-ab]|= 0