Home
Class 12
MATHS
The value of the det. |[2,a,abc],[2,b,bc...

The value of the `det. |[2,a,abc],[2,b,bca],[2,c,cab]|` is

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION IV) |7 Videos
  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION V) |21 Videos
  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION II) (SHORT ANSWER TYPE QUESTIONS )|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARDS QUESTIONS FOR PRACTICE (MULTIPLE CHOICE QUESTIONS)|94 Videos
  • DIFFERENTIAL EQUATIONS

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARD.S QUESTIONS FOR PRACTICE|50 Videos

Similar Questions

Explore conceptually related problems

Use properties of determinants ot evaluate: {:|(2,a,abc),(2,b,bca),(2,c,cab)|

Write the value of det (2I_3)

Prove that |[[a,b,c],[a^2,b^2,c^2],[a^3,b^3,c^3]]|= abc (a-b)(b-c)(c-a)

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The value a^(2) b^(2) + b^(2) c^(2) + c^(2) a^(2) , is

Using properties of determinants, show that: |[[(b+c)^2, a^2, a^2],[b^2, (c+a)^2, b^2],[c^2,c^2,(a+b)^2]]|= 2abc (a+b+c)^3 .

Prove that |((b+c)^2,ab,ca),(ab,(a+c)^2,bc),(ac,bc,(a+b)^2)|=2abc(a+b+c)^3

The minimum value of ((a^2 +3a+1)(b^2+3b + 1)(c^2+ 3c+ 1))/(abc) The minimum value of , where a, b, c in R^+ is

Let A= [[a,b,c],[p,q,r],[x,y,z]] and suppose then det (A) = 2, then det (B) equals, where B = [[4x,2a,-p],[4y, 2b, -q],[4z, 2c, -r]]

In a Delta ABC, a,b,A are given and c_(1), c_(2) are two values of the third side c. The sum of the areas two triangles with sides a,b, c_(1) and a,b,c_(2) is

BETTER CHOICE PUBLICATION-DETERMINANTS -ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION III)
  1. Prove that |[1,a,a^2-bc],[1,b,b^2-ca],[1,c,c^2-ab]|= 0

    Text Solution

    |

  2. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  3. The value of the det. |[2,a,abc],[2,b,bca],[2,c,cab]| is

    Text Solution

    |

  4. Using the property of determinants and without expanding , prove that:...

    Text Solution

    |

  5. Prove that: |[x+y,x,x],[5x+4y,4x,2x],[10x+8y,8x,3x]|=x^3.

    Text Solution

    |

  6. Without expanding, prove the following |(x+4,x,x),(x,x+4,x),(x,x,x+...

    Text Solution

    |

  7. Evaluate |[1,x,y],[1,x+y,y],[1,x,x+y]|

    Text Solution

    |

  8. Prove that |[b+c,a,a],[b,c+a,b],[c,c,a+b]| = 4abc

    Text Solution

    |

  9. Prove that: |[-a^2, ab,ac],[ba,-b^2,bc],[ca,cb,-c^2]|=4a^2b^2c^2

    Text Solution

    |

  10. Without expanding, prove the following |(0,ab^2,ac^2),(a^2b,0,bc^2)...

    Text Solution

    |

  11. Without expanding, prove the following |(y+z,z,y),(z,z+x,x),(y,x,x+...

    Text Solution

    |

  12. Without expanding, prove the following |(a,a+b,a+2b),(a+2b,a,a+b),(...

    Text Solution

    |

  13. Prove that: |[1,1+p,1+p+q],[2,3+2p,4+3p+2q],[3,6+3p,10+6p+3q]|=1

    Text Solution

    |

  14. Without expanding, prove the following |(1+a^2-b^2,2ab,-2b),(2ab,1-...

    Text Solution

    |

  15. Without expanding, prove the following |(x,x+y,x+2y),(x+2y,x,x+y),(...

    Text Solution

    |

  16. Show that: |[x-y-z,2x,2x],[2y,y-z-x,2y],[2z,2z,z-x-y]|=(x+y+z)^3

    Text Solution

    |

  17. Without expanding, prove the following |(1,a,a^3),(1,b,b^3),(1,c,c^...

    Text Solution

    |

  18. Without expanding, prove the following |(x,y,z),(x^2,y^2,z^2),(x^3,...

    Text Solution

    |

  19. Without expanding, prove the following |(1,1,1),(alpha,beta,gamma),...

    Text Solution

    |

  20. Without expanding, prove the following |(a,b,c),(a^2,b^2,c^2),(bc,c...

    Text Solution

    |