Home
Class 12
MATHS
Without expanding, prove the following ...

Without expanding, prove the following
`|(a^2,2ab,b^2),(b^2,a^2,2ab),(2ab,b^2,a^2)|=(a^3+b^3)^2`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION IV) |7 Videos
  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION V) |21 Videos
  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION II) (SHORT ANSWER TYPE QUESTIONS )|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARDS QUESTIONS FOR PRACTICE (MULTIPLE CHOICE QUESTIONS)|94 Videos
  • DIFFERENTIAL EQUATIONS

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARD.S QUESTIONS FOR PRACTICE|50 Videos

Similar Questions

Explore conceptually related problems

Without expanding, prove the following |(0,ab^2,ac^2),(a^2b,0,bc^2),(a^2b,b^2c,0)|=2a^3b^3c^3

Without expanding, prove the following |(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=9(a+b)b^2

Without expanding, prove the following |(1+a^2-b^2,2ab,-2b),(2ab,1-a^2+6^2,2a),(2a,-2a,1-a^2-b^2)|=(1+a^2+b^2 )^3

Without expanding, prove the following |(a^3+1,a^2,a),(b^3+1,b^2,b),(c^3+1,c^2,c)|=-(a-b)(b-c)(c-a)(abc+1)

Without expanding, prove the following |(a,b,c),(a^2,b^2,c^2),(bc,ca,ab)|=(a-b)(b-c)(c-a)(ab+bc+ca)

Without expanding, prove the following |(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|=2(a+b+c)(ab+bc+ca-a^2-b^2-c^2)

Without expanding, prove that the following determinants vanish: {:|(b^2c^2,bc,b+c),(c^2a^2,ca,c+a),(a^2b^2,ab,a+b)|

Prove that: {:|(1+a^2-b^2,2ab,-2b),(2ab,1-a^2+b^2,2a),(2b,-2a,1-a^2-b^2)|

Prove that |((b+c)^2,ab,ca),(ab,(a+c)^2,bc),(ac,bc,(a+b)^2)|=2abc(a+b+c)^3

Without actual expansion, prove that the following determinants vanish: {:|(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)|

BETTER CHOICE PUBLICATION-DETERMINANTS -ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION III)
  1. Without expanding, prove the following |(a,a+b,a+2b),(a+2b,a,a+b),(...

    Text Solution

    |

  2. Prove that: |[1,1+p,1+p+q],[2,3+2p,4+3p+2q],[3,6+3p,10+6p+3q]|=1

    Text Solution

    |

  3. Without expanding, prove the following |(1+a^2-b^2,2ab,-2b),(2ab,1-...

    Text Solution

    |

  4. Without expanding, prove the following |(x,x+y,x+2y),(x+2y,x,x+y),(...

    Text Solution

    |

  5. Show that: |[x-y-z,2x,2x],[2y,y-z-x,2y],[2z,2z,z-x-y]|=(x+y+z)^3

    Text Solution

    |

  6. Without expanding, prove the following |(1,a,a^3),(1,b,b^3),(1,c,c^...

    Text Solution

    |

  7. Without expanding, prove the following |(x,y,z),(x^2,y^2,z^2),(x^3,...

    Text Solution

    |

  8. Without expanding, prove the following |(1,1,1),(alpha,beta,gamma),...

    Text Solution

    |

  9. Without expanding, prove the following |(a,b,c),(a^2,b^2,c^2),(bc,c...

    Text Solution

    |

  10. Without expanding, prove the following |(a^3+1,a^2,a),(b^3+1,b^2,b)...

    Text Solution

    |

  11. Without expanding, prove the following |(b+c,c+a,a+b),(q+r,r+p,p+q)...

    Text Solution

    |

  12. Without expanding, prove the following |(b+c,c+a,a+b),(c+a,a+b,b+c)...

    Text Solution

    |

  13. Without expanding, prove the following |(a^2,2ab,b^2),(b^2,a^2,2ab)...

    Text Solution

    |

  14. Without expanding, prove the following |(a,b-c,c-b),(a-c,b,c-a),(a-...

    Text Solution

    |

  15. Without expanding, prove the following |(a,b,c),(a-b,b-c,c-a),(b+c,...

    Text Solution

    |

  16. Solve the equation |(3x-8,3,3),(3,3x-8,3),(3,3,3x-8)|=0

    Text Solution

    |

  17. Solve the equation |(x-2,2x-3,3x-4),(x-4,2x-9,3x-16),(x-8,2x-27,3x-64)...

    Text Solution

    |

  18. Solve for x: |(x+9,x,x),(x,x+9,x),(x,x,x+9)|=0

    Text Solution

    |

  19. Solve for x":"|(a+x,a-x,a-x),(a-x,a+x,a-x),(a-x,a-x,a+x)|=0

    Text Solution

    |

  20. Using properties of determinants , prove that |(x^2+1,xy,zx),(xy,y^2...

    Text Solution

    |