Home
Class 12
MATHS
Using properties of determinants , prove...

Using properties of determinants , prove that
`|(x^2+1,xy,zx),(xy,y^2+1,yz),(zx,yz,z^2+1)|=1+x^2+y^2+z^2`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION IV) |7 Videos
  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION V) |21 Videos
  • DETERMINANTS

    BETTER CHOICE PUBLICATION|Exercise ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION II) (SHORT ANSWER TYPE QUESTIONS )|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARDS QUESTIONS FOR PRACTICE (MULTIPLE CHOICE QUESTIONS)|94 Videos
  • DIFFERENTIAL EQUATIONS

    BETTER CHOICE PUBLICATION|Exercise PREVIOUS YEARS BOARD.S QUESTIONS FOR PRACTICE|50 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove that : {:|((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3

Using prperties of determinants, prove that : |(1,1,1+3x),(1+3y,1,1),(1,1+3z,1)| = 9(3xyz + xy + yz + zx) .

Using the properties of determinants, prove that : |[[a+x,y,z],[x,a+y,z],[x,y,a+z]]|=a^2(a+x+y+z)

Using the properties of determinants, show that : |[[x, y, z],[x^2, y^2, z^2],[x,y,z]]|= 0 .

Use properties of determinants ot evaluate: {:|(x+y,y+z,z+x),(z,x,y),(1,1,1)|

Using properties of determinants, prove that: |[x,x^2,1+px^3],[y,y^2,1+py^3],[z,z^2,1+pz^3]| = (1+pxyz)(x-y)(y-z)(z-x)

By using properties of determinants, show that : |[x+y+2z,x,y],[z,y+z+2x,y],[z,z,z+x+2y]| = 2(x+y+z)^3

Prove that |(1,x,x^2),(1,y,y^2),(1,z,z^2)| = (x-y)(y-z)(z-x)

Using the properties of determinants, show that : |[[x^2, y^2, z^2],[yz, zx, xy],[x,y,z]]|= (x-y)(y-z)(z-x)(xy+yz+zx) .

Using the properties of determinant, show that : |[1,x+y,x^2+y^2],[1,y+z,y^2+z^2],[1,z+x,z^2+x^2]| = (x-y)(y-z)(z-x)

BETTER CHOICE PUBLICATION-DETERMINANTS -ASSIGNMENT (MOST IMPORTANT QUESTIONS FOR PRACTICE) (SECTION III)
  1. Without expanding, prove the following |(a,a+b,a+2b),(a+2b,a,a+b),(...

    Text Solution

    |

  2. Prove that: |[1,1+p,1+p+q],[2,3+2p,4+3p+2q],[3,6+3p,10+6p+3q]|=1

    Text Solution

    |

  3. Without expanding, prove the following |(1+a^2-b^2,2ab,-2b),(2ab,1-...

    Text Solution

    |

  4. Without expanding, prove the following |(x,x+y,x+2y),(x+2y,x,x+y),(...

    Text Solution

    |

  5. Show that: |[x-y-z,2x,2x],[2y,y-z-x,2y],[2z,2z,z-x-y]|=(x+y+z)^3

    Text Solution

    |

  6. Without expanding, prove the following |(1,a,a^3),(1,b,b^3),(1,c,c^...

    Text Solution

    |

  7. Without expanding, prove the following |(x,y,z),(x^2,y^2,z^2),(x^3,...

    Text Solution

    |

  8. Without expanding, prove the following |(1,1,1),(alpha,beta,gamma),...

    Text Solution

    |

  9. Without expanding, prove the following |(a,b,c),(a^2,b^2,c^2),(bc,c...

    Text Solution

    |

  10. Without expanding, prove the following |(a^3+1,a^2,a),(b^3+1,b^2,b)...

    Text Solution

    |

  11. Without expanding, prove the following |(b+c,c+a,a+b),(q+r,r+p,p+q)...

    Text Solution

    |

  12. Without expanding, prove the following |(b+c,c+a,a+b),(c+a,a+b,b+c)...

    Text Solution

    |

  13. Without expanding, prove the following |(a^2,2ab,b^2),(b^2,a^2,2ab)...

    Text Solution

    |

  14. Without expanding, prove the following |(a,b-c,c-b),(a-c,b,c-a),(a-...

    Text Solution

    |

  15. Without expanding, prove the following |(a,b,c),(a-b,b-c,c-a),(b+c,...

    Text Solution

    |

  16. Solve the equation |(3x-8,3,3),(3,3x-8,3),(3,3,3x-8)|=0

    Text Solution

    |

  17. Solve the equation |(x-2,2x-3,3x-4),(x-4,2x-9,3x-16),(x-8,2x-27,3x-64)...

    Text Solution

    |

  18. Solve for x: |(x+9,x,x),(x,x+9,x),(x,x,x+9)|=0

    Text Solution

    |

  19. Solve for x":"|(a+x,a-x,a-x),(a-x,a+x,a-x),(a-x,a-x,a+x)|=0

    Text Solution

    |

  20. Using properties of determinants , prove that |(x^2+1,xy,zx),(xy,y^2...

    Text Solution

    |