Home
Class 12
MATHS
If (alpha , beta) is the point on y^2=6x...

If `(alpha , beta)` is the point on `y^2=6x` , that is closest to `(3,3/2)` then find the value of `2(alpha+beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the point \((\alpha, \beta)\) on the curve \(y^2 = 6x\) that is closest to the point \((3, \frac{3}{2})\), we can follow these steps: ### Step 1: Express the relationship between \(\alpha\) and \(\beta\) Since the point \((\alpha, \beta)\) lies on the curve \(y^2 = 6x\), we can express this relationship as: \[ \beta^2 = 6\alpha \] ### Step 2: Write the distance squared between the points The distance \(d\) between the points \((\alpha, \beta)\) and \((3, \frac{3}{2})\) can be expressed using the distance formula. To simplify our calculations, we will work with the square of the distance \(d^2\): \[ d^2 = (\alpha - 3)^2 + \left(\beta - \frac{3}{2}\right)^2 \] ### Step 3: Expand the distance squared Expanding the expression for \(d^2\): \[ d^2 = (\alpha - 3)^2 + \left(\beta - \frac{3}{2}\right)^2 = (\alpha^2 - 6\alpha + 9) + \left(\beta^2 - 3\beta + \frac{9}{4}\right) \] Substituting \(\beta^2 = 6\alpha\) into the equation: \[ d^2 = \alpha^2 - 6\alpha + 9 + (6\alpha - 3\beta + \frac{9}{4}) \] This simplifies to: \[ d^2 = \alpha^2 - 3\beta + 9 + \frac{9}{4} \] ### Step 4: Substitute \(\beta\) in terms of \(\alpha\) From \(\beta^2 = 6\alpha\), we can express \(\beta\) as: \[ \beta = \sqrt{6\alpha} \] Now substituting this into \(d^2\): \[ d^2 = \alpha^2 - 3\sqrt{6\alpha} + \frac{45}{4} \] ### Step 5: Differentiate to find the minimum distance To find the minimum distance, we differentiate \(d^2\) with respect to \(\alpha\) and set the derivative to zero: \[ \frac{d(d^2)}{d\alpha} = 2\alpha - \frac{3 \cdot 6}{2\sqrt{6\alpha}} = 0 \] This simplifies to: \[ 2\alpha - \frac{9}{\sqrt{6\alpha}} = 0 \] ### Step 6: Solve for \(\alpha\) Rearranging gives: \[ 2\alpha\sqrt{6\alpha} = 9 \] Squaring both sides: \[ 4\alpha^2 \cdot 6\alpha = 81 \implies 24\alpha^3 = 81 \implies \alpha^3 = \frac{81}{24} = \frac{27}{8} \] Taking the cube root: \[ \alpha = \left(\frac{27}{8}\right)^{\frac{1}{3}} = \frac{3}{2} \] ### Step 7: Find \(\beta\) Substituting \(\alpha = \frac{3}{2}\) back to find \(\beta\): \[ \beta = \sqrt{6 \cdot \frac{3}{2}} = \sqrt{9} = 3 \] ### Step 8: Calculate \(2(\alpha + \beta)\) Now, we calculate: \[ 2(\alpha + \beta) = 2\left(\frac{3}{2} + 3\right) = 2\left(\frac{3}{2} + \frac{6}{2}\right) = 2\left(\frac{9}{2}\right) = 9 \] Thus, the final answer is: \[ \boxed{9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta be the roots of the quadratic equation 3x^(2)-6x+4=0 , find the value of ((alpha)/(beta)+(beta)/(alpha))+2((1)/(alpha)+(1)/(beta))+3alpha beta :

If alpha,beta be the roots of the equation 3x^(2)-6x+4=0, then find the value of ((alpha^(2))/(beta)+(beta^(2))/(alpha))+((alpha)/(beta)+(beta)/(alpha))+2((1)/(alpha)+(1)/(beta))+3 alpha beta

If alpha and beta are the roots of the equation x^(2)-4x+1=0(alpha>beta) then find the value of f(alpha,beta)=(beta^(3))/(2)csc^(2)((1)/(2)tan^(-1)((beta)/(alpha))+(alpha^(3))/(2)sec^(2)((1)/(2)tan^(-1)((alpha)/(beta)))

If alpha and beta are the roots of the equation x^(2)-4x+1=0(alpha

If alpha and beta are zeroes of the quadratic polynomial p(x)=6x^(2)+x-1, then find the value of (alpha)/(beta)+(beta)/(alpha)+2((1)/(alpha)+(1)/(beta))+3 alpha beta

If alpha,beta are the zeroes of the polynomials f(x)=x^(2)-3x+6 then find the value of (1)/(alpha)+(1)/(beta)+alpha^(2)+beta^(2)-2 alpha beta

If alpha and beta are the roots of the quadratic equation x^(2)-6x+1=0, then the value of (alpha^(2))/(beta^(2))+(beta^(2))/(alpha^(2)) is

If alpha, beta are the roots of the equation 2x^2+5x+3=0 , then find the value of beta/alpha + alpha/beta .

If alpha and beta are zeroes of x^(2)-5x+6 , then find the value of alpha^(2)+beta^(2) .

If alpha and beta are the zeros of the quadratic polynomial p(s)=3s^(2)-6s+4, find the value of (alpha)/(beta)+(beta)/(alpha)+2((1)/(alpha)+(1)/(beta))+3 alpha beta