Home
Class 12
MATHS
If f(x)=x+1. Find lim(nrarroo)1/n(1+f(5/...

If `f(x)=x+1`. Find `lim_(nrarroo)1/n(1+f(5/n)+f(10/n)+. . . + f(5((n-1)/(n)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start with the function \( f(x) = x + 1 \) and need to evaluate: \[ \lim_{n \to \infty} \frac{1}{n} \left( 1 + f\left(\frac{5}{n}\right) + f\left(\frac{10}{n}\right) + \ldots + f\left(\frac{5(n-1)}{n}\right) \right) \] ### Step 1: Rewrite the expression using the function \( f(x) \) We can express the terms inside the limit using the definition of \( f(x) \): \[ f\left(\frac{5k}{n}\right) = \frac{5k}{n} + 1 \] for \( k = 0, 1, 2, \ldots, n-1 \). ### Step 2: Substitute into the limit Substituting this into our limit gives: \[ \lim_{n \to \infty} \frac{1}{n} \left( 1 + \left(\frac{5 \cdot 0}{n} + 1\right) + \left(\frac{5 \cdot 1}{n} + 1\right) + \ldots + \left(\frac{5(n-1)}{n} + 1\right) \right) \] This simplifies to: \[ \lim_{n \to \infty} \frac{1}{n} \left( 1 + \sum_{k=0}^{n-1} \left(\frac{5k}{n} + 1\right) \right) \] ### Step 3: Simplify the summation The summation can be split into two parts: \[ \sum_{k=0}^{n-1} \left(\frac{5k}{n} + 1\right) = \sum_{k=0}^{n-1} \frac{5k}{n} + \sum_{k=0}^{n-1} 1 \] The second summation is simply \( n \): \[ \sum_{k=0}^{n-1} 1 = n \] The first summation can be calculated as follows: \[ \sum_{k=0}^{n-1} \frac{5k}{n} = \frac{5}{n} \sum_{k=0}^{n-1} k = \frac{5}{n} \cdot \frac{(n-1)n}{2} = \frac{5(n-1)}{2} \] ### Step 4: Combine the results Now, substituting back, we have: \[ \lim_{n \to \infty} \frac{1}{n} \left( 1 + \frac{5(n-1)}{2} + n \right) \] This simplifies to: \[ \lim_{n \to \infty} \frac{1}{n} \left( 1 + \frac{5(n-1)}{2} + n \right) = \lim_{n \to \infty} \frac{1}{n} \left( n + \frac{5(n-1)}{2} + 1 \right) \] ### Step 5: Factor out \( n \) Factoring out \( n \) gives: \[ \lim_{n \to \infty} \left( 1 + \frac{5(n-1)}{2n} + \frac{1}{n} \right) = \lim_{n \to \infty} \left( 1 + \frac{5}{2} - \frac{5}{2n} + \frac{1}{n} \right) \] As \( n \to \infty \), the terms \( -\frac{5}{2n} \) and \( \frac{1}{n} \) approach 0. Thus, we have: \[ 1 + \frac{5}{2} = \frac{7}{2} \] ### Final Result Therefore, the limit evaluates to: \[ \boxed{\frac{7}{2}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=log_2(1+tan((pix)/4)) . Find lim_(nrarroo)2/n(f(1/n)+f(2/n)+ . . . + f(1))

lim_(nrarroo) [1/(1+n)+(1)/(2+n)+(1)/(3+n)+"....."+(1)/(5n)]

If f : R to R is given f (x) = x +1, then the value of lim _( b - oo) (1)/(n) [ f (0) + f ((5)/(n)) + f ((10)/(n)) +...+ f ((5 ( n -1))/( n )) ], is :

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1) then range of f(x) is

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

If f:R rarr R is continous function satisying f(0) =1 and f(2x) -f(x) =x, AAx in R , then lim_(nrarroo) (f(x)-f((x)/(2^(n)))) is equal to

Let f(x)=(1+(1)/(x))^(x)(xgt0) and g(x){:[(xIn(1+(1//x))",",if0ltxle1),(" "0",",ifx=0):} lim_(n to oo){f((1)/(n)).f((2)/(n)).f((3)/(n))...f((n)/(n))}^(1//n) equals

If f(x) is integrable over [1,], then int_(2)^(2)f(x)dx is equal to lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=n+1)^(2n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r+n)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)f((r)/(n))

Let F: (0,2) to R be defined as f (x) = log _(2) (1 + tan ((pix)/(4))). Then lim _( n to oo) (2)/(n) (f ((1)/(n )) + f ((2)/(n)) + …+ f (1) ) is equal to