Home
Class 12
MATHS
int(-pi/2)^(pi/2) [[x]+sinx]dx=?...

`int_(-pi/2)^(pi/2) [[x]+sinx]dx=?`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-\pi/2}^{\pi/2} [x] + \sin x \, dx \), where \([x]\) denotes the greatest integer function, we can break the integral into segments based on the behavior of the greatest integer function and the sine function. ### Step 1: Identify the intervals The function \([x]\) changes at integer values. The critical points in the interval \([- \pi/2, \pi/2]\) are \(-1\), \(0\), and \(1\). Thus, we can break the integral into three parts: 1. From \(-\pi/2\) to \(-1\) 2. From \(-1\) to \(0\) 3. From \(0\) to \(1\) 4. From \(1\) to \(\pi/2\) ### Step 2: Evaluate the integral on each interval #### Interval 1: \([- \pi/2, -1]\) In this interval, \(x\) is less than \(-1\), so \([x] = -2\). Therefore, the integral becomes: \[ \int_{-\pi/2}^{-1} (-2 + \sin x) \, dx \] #### Interval 2: \([-1, 0]\) In this interval, \([-1 \leq x < 0]\), we have \([x] = -1\). Thus, the integral becomes: \[ \int_{-1}^{0} (-1 + \sin x) \, dx \] #### Interval 3: \([0, 1]\) In this interval, \(0 \leq x < 1\), we have \([x] = 0\). Therefore, the integral becomes: \[ \int_{0}^{1} (0 + \sin x) \, dx \] #### Interval 4: \([1, \pi/2]\) In this interval, \(x\) is greater than \(1\), so \([x] = 1\). Thus, the integral becomes: \[ \int_{1}^{\pi/2} (1 + \sin x) \, dx \] ### Step 3: Calculate each integral 1. **For \([- \pi/2, -1]\)**: \[ \int_{-\pi/2}^{-1} (-2 + \sin x) \, dx = \left[-2x - \cos x \right]_{-\pi/2}^{-1} \] Evaluating this gives: \[ = \left[-2(-1) - \cos(-1)\right] - \left[-2(-\pi/2) - \cos(-\pi/2)\right] \] \[ = [2 - \cos(1)] - [\pi - 0] = 2 - \cos(1) - \pi \] 2. **For \([-1, 0]\)**: \[ \int_{-1}^{0} (-1 + \sin x) \, dx = \left[-x - \cos x \right]_{-1}^{0} \] Evaluating this gives: \[ = [0 - \cos(0)] - [-(-1) - \cos(-1)] = [0 - 1] - [1 - \cos(1)] = -1 - 1 + \cos(1) = -2 + \cos(1) \] 3. **For \([0, 1]\)**: \[ \int_{0}^{1} \sin x \, dx = [-\cos x]_{0}^{1} = [-\cos(1) + \cos(0)] = [-\cos(1) + 1] \] 4. **For \([1, \pi/2]\)**: \[ \int_{1}^{\pi/2} (1 + \sin x) \, dx = [x - \cos x]_{1}^{\pi/2} \] Evaluating this gives: \[ = \left[\frac{\pi}{2} - 0\right] - [1 - \cos(1)] = \frac{\pi}{2} - 1 + \cos(1) \] ### Step 4: Combine all parts Now, we combine all the results: \[ \text{Total} = (2 - \cos(1) - \pi) + (-2 + \cos(1)) + (-\cos(1) + 1) + \left(\frac{\pi}{2} - 1 + \cos(1)\right) \] Simplifying this: \[ = 2 - \pi - 2 + \frac{\pi}{2} - 1 + 1 + (-\cos(1) + \cos(1)) = \frac{\pi}{2} - \pi = -\frac{\pi}{2} \] ### Final Result Thus, the value of the integral is: \[ \int_{-\pi/2}^{\pi/2} ([x] + \sin x) \, dx = -\frac{\pi}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(pi/3)^(pi/2) sinx dx

Evaluate: int_(-pi//2)^(pi//2)|sinx|dx

What is int_(-pi//2)^(pi//2) |sinx| dx equal to ?

Evaluate : (i) int_(-pi//2)^(pi//2)|sinx|dx (ii) int_(-1)^(1)e^(|x|)dx (iii) int_(-2)^(1)|2x+1|dx .

The value of int_(-pi/2)^(pi/2) ((1+sin^(2)x)/(1 +pi^(sinx))) dx is

int_(-pi//4)^(pi//4)|sinx|dx=(2-sqrt(2))

int_(-pi//2)^(pi//2) (5sin^3 x+8sinx+4 cos^2x) dx

Evaluate int_(-pi/2)^(pi/2) log((2-sinx)/(2+sinx))dx

Evaluate int_(-(pi)/(2))^(pi/2) sin^(3)xcos^(2)x(sinx+cosx)dx .