Home
Class 12
MATHS
f(x)=x^3-3x^2-3/2f''(2)+f''(1) is double...

`f(x)=x^3-3x^2-3/2f''(2)+f''(1)` is double differenciation function then find the sum of all minimas

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(x)=4x^3-3x^2+2x+k and f(0)=1, f(1)=4 find f(x)

If f(x) is an odd function,f(1)=3,f(x+2)=f(x)+f(2), then the value of f(3) is

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0, find f(x)

If f'(x)=3x^(2)-(2)/(x^(3)) and f(1)=0, find f(x).

Consider the function f(x)=(x-1)^(2)(x+1)(x-2)^(3). What is the number of points of local minima of the function f(x)? What is the number of points of local maxima of the function f(x)?

f is a function such that f(x)+2f(1-x)=x^(2)+1 . Value of f(3) is

If the function f defined as f(x) = (cx)/(2x +3) , x!=-3/2 satisfies f(f(x))=x then find the absolute value of of sum of all possible values of c .

f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The value of f(1) is

f:RrarrR,f(x)=x^(3)+x^(2)f'(1)+xf''(2)+f'''(3)" for all "x in R. The value of f'(1)+f''(2)+f'''(3) is