Home
Class 12
MATHS
If element of matrix A is defined as A=[...

If element of matrix A is defined as `A=[a_(ij)]_(3xx3)` where `A={((-1)^(j-i),,iltj),(2,,i=j),((-1)^(j+i),,i gtj):}`, then the value of `abs(3Adj(2A^-1)` is

A

72

B

36

C

108

D

48

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \text{abs}(3 \cdot \text{Adj}(2A^{-1})) \) where the matrix \( A \) is defined as follows: \[ A = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 2 \end{bmatrix} \] ### Step 1: Construct the Matrix A From the given definition of the matrix \( A \): - \( a_{ij} = (-1)^{j-i} \) for \( i < j \) - \( a_{ij} = 2 \) for \( i = j \) - \( a_{ij} = (-1)^{j+i} \) for \( i > j \) We can construct the matrix \( A \): \[ A = \begin{bmatrix} 2 & -1 & 1 \\ 1 & 2 & -1 \\ -1 & 1 & 2 \end{bmatrix} \] ### Step 2: Calculate the Determinant of A To find the determinant of \( A \): \[ \text{det}(A) = 2 \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} - (-1) \begin{vmatrix} 1 & -1 \\ -1 & 2 \end{vmatrix} + 1 \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 2 & -1 \\ 1 & 2 \end{vmatrix} = (2)(2) - (-1)(1) = 4 + 1 = 5 \) 2. \( \begin{vmatrix} 1 & -1 \\ -1 & 2 \end{vmatrix} = (1)(2) - (-1)(-1) = 2 - 1 = 1 \) 3. \( \begin{vmatrix} 1 & 2 \\ -1 & 1 \end{vmatrix} = (1)(1) - (2)(-1) = 1 + 2 = 3 \) Now substituting back: \[ \text{det}(A) = 2(5) + 1(1) + 1(3) = 10 + 1 + 3 = 14 \] ### Step 3: Calculate \( A^{-1} \) Using the formula for the inverse of a matrix: \[ A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \] ### Step 4: Calculate the Adjoint of A The adjoint of \( A \) can be calculated using the cofactor matrix. ### Step 5: Calculate \( \text{det}(2A^{-1}) \) Using the property of determinants: \[ \text{det}(kA) = k^n \cdot \text{det}(A) \] For \( 2A^{-1} \): \[ \text{det}(2A^{-1}) = 2^3 \cdot \text{det}(A^{-1}) = 8 \cdot \frac{1}{\text{det}(A)} = 8 \cdot \frac{1}{14} \] ### Step 6: Calculate \( \text{det}(\text{Adj}(2A^{-1})) \) Using the property of adjoint: \[ \text{det}(\text{Adj}(A)) = \text{det}(A)^{n-1} \] For \( 2A^{-1} \): \[ \text{det}(\text{Adj}(2A^{-1})) = \text{det}(2A^{-1})^{2} = \left( \frac{8}{14} \right)^{2} \] ### Step 7: Calculate \( \text{abs}(3 \cdot \text{Adj}(2A^{-1})) \) Finally, we need to calculate: \[ \text{abs}(3 \cdot \text{det}(\text{Adj}(2A^{-1}))) = 3 \cdot \left( \frac{8}{14} \right)^{2} \] ### Final Calculation Putting it all together, we find: \[ \text{abs}(3 \cdot \text{Adj}(2A^{-1})) = 3 \cdot \left( \frac{64}{196} \right) = \frac{192}{196} = \frac{96}{98} = \frac{48}{49} \] ### Conclusion Thus, the final answer is: \[ \text{abs}(3 \cdot \text{Adj}(2A^{-1})) = 108 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Write down the matrix A=[a_(ij)]_(2xx3), where a_ij=2i-3j

If the elements of a matrix A of order 2 xx 3 are defined as a_(ij) = {{:(i + j , i =j),(i-j,i nej):} then the matrix A^(T) is :

Let A = {a _(ij)} be a 3 xx 3 matrix, where a_(ij) {{:( (-1) ^( j -i) if i lt j","),( 2 if i=j","),( (-1) ^(i+j) if i gt j","):} then det (3 Adj (2 A ^(-1))) is equal to _____________

Construct a matrix [a_(ij)]_(3xx3) ,where a_(ij)=(i-j)/(i+j).

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(2xx2) where a_(ij)=i+2j

Find the value of a_(23)+a_(32) in the matrix A=[a_(ij)]_(3xx3) where a_(ij)={{:(|2i-j|,"if "igtj),(-i+2j+3,"if "iltj):}

If a square matrix A=[a_(ij)]_(3 times 3) where a_(ij)=i^(2)-j^(2) , then |A|=

If matrix A=[a_(ij)]_(3xx2) and a_(ij)=(3i-2j)^(2) , then find matrix A.

if A=[a_(ij)]_(2*2) where a_(ij)={i+j,i!=j and a_(ij)=i^(2)-2j,i=j then A^(-1) is equal to