Home
Class 12
MATHS
In a triangle ABC if vecabs(AB)=7 ,veca...

In a ` triangle ABC` if `vecabs(AB)=7 ,vecabs(BC)=5 ,and vecabs(CA)=3.` . If the projection of `vec(BC)` on `vec(CA)` is `n/2`, then the value of n is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) given the conditions of triangle \( ABC \) and the projection of vector \( \vec{BC} \) onto vector \( \vec{CA} \). ### Step-by-Step Solution: 1. **Identify the Given Values**: - \( |\vec{AB}| = 7 \) - \( |\vec{BC}| = 5 \) - \( |\vec{CA}| = 3 \) 2. **Understand the Projection**: - The projection of vector \( \vec{BC} \) onto vector \( \vec{CA} \) can be calculated using the formula: \[ \text{Projection of } \vec{BC} \text{ on } \vec{CA} = |\vec{BC}| \cdot \cos(\theta) \] where \( \theta \) is the angle between vectors \( \vec{BC} \) and \( \vec{CA} \). 3. **Use the Cosine Rule to Find \( \cos(\theta) \)**: - According to the cosine rule: \[ c^2 = a^2 + b^2 - 2ab \cos(\theta) \] Here, let: - \( a = |\vec{CA}| = 3 \) - \( b = |\vec{BC}| = 5 \) - \( c = |\vec{AB}| = 7 \) Plugging the values into the cosine rule: \[ 7^2 = 3^2 + 5^2 - 2 \cdot 3 \cdot 5 \cos(\theta) \] This simplifies to: \[ 49 = 9 + 25 - 30 \cos(\theta) \] \[ 49 = 34 - 30 \cos(\theta) \] Rearranging gives: \[ 30 \cos(\theta) = 34 - 49 \] \[ 30 \cos(\theta) = -15 \] \[ \cos(\theta) = -\frac{15}{30} = -\frac{1}{2} \] 4. **Calculate the Projection**: - Now substituting \( \cos(\theta) \) back into the projection formula: \[ \text{Projection of } \vec{BC} \text{ on } \vec{CA} = |\vec{BC}| \cdot \cos(\theta) = 5 \cdot \left(-\frac{1}{2}\right) = -\frac{5}{2} \] Since we are interested in the magnitude, we take the absolute value: \[ \text{Magnitude of Projection} = \frac{5}{2} \] 5. **Set Up the Equation**: - According to the problem, this projection is equal to \( \frac{n}{2} \): \[ \frac{n}{2} = \frac{5}{2} \] 6. **Solve for \( n \)**: - Multiplying both sides by 2 gives: \[ n = 5 \] ### Conclusion: The value of \( n \) is \( 5 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, if |vec(BC)|=8, |vec(CA)|=7, |vec(AB)|=10 , then the projection of the vec(AB) on vec(AC) is equal to :

In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + vec(BC) .vec(BA) + vec(CA). vec(CB) equal to ?

In a triangle ABC if angle ABC=60^(@) , then ((AB-BC+CA)/(r ))^(2)=

Consider A(2, 3, 4), B(4, 3,2) and C(5,2,-1) be any three points. (a) Find the projection of vec(BC ) on vec(AB) . (b) Find the area of triangle ABC.

Can we drawn a triangle, ABC with AB=3 cm, BC= 3.5 cm and Ca=65 cm ?

In a triangle ABC, let AB=sqrt23, BC=3 and CA =4 . Then the value of (cotA+cotC)/cotB is

In a Delta ABC, " if " vec(AB) = hati - 7hatj + hatk and vec(BC) = 3 hatj + hatj + 2 hatk, " then " | vec(CA)|=

In a triangle ABC, if taken in order, consider the following statements 1. vec(AB) + vec(BC) + vec(CA) = vec(0) 2 vec(AB) + vec(BC) - vec(CA) = vec(0) 3. vec(AB)- vec(BC) + vec(CA) = vec(0) 4. vec(BA)- vec(BC) + vec(CA) = vec(0) How many of the above statements are correct?

In a right angled triangle ABC, the hypotenuse AB =p, then vec(AB).vec(AC) + vec(BC).vec(BA)+vec(CA).vec(CB) is equal to: