Home
Class 12
MATHS
The value of tan(2tan^-1(3/5)+sin^-1(5/1...

The value of `tan(2tan^-1(3/5)+sin^-1(5/13))` is

A

`220/21`

B

`110/21`

C

`55/21`

D

`20/11`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan(2\tan^{-1}(\frac{3}{5}) + \sin^{-1}(\frac{5}{13})) \), we can follow these steps: ### Step 1: Let \( \theta = \tan^{-1}(\frac{3}{5}) \) From this, we can deduce that: \[ \tan(\theta) = \frac{3}{5} \] Using the identity for \( \tan(2\theta) \): \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] Substituting \( \tan(\theta) \): \[ \tan(2\theta) = \frac{2 \cdot \frac{3}{5}}{1 - \left(\frac{3}{5}\right)^2} \] ### Step 2: Calculate \( 1 - \tan^2(\theta) \) Calculating \( \tan^2(\theta) \): \[ \tan^2(\theta) = \left(\frac{3}{5}\right)^2 = \frac{9}{25} \] Thus, \[ 1 - \tan^2(\theta) = 1 - \frac{9}{25} = \frac{25 - 9}{25} = \frac{16}{25} \] ### Step 3: Substitute back into \( \tan(2\theta) \) Now substituting back: \[ \tan(2\theta) = \frac{2 \cdot \frac{3}{5}}{\frac{16}{25}} = \frac{\frac{6}{5}}{\frac{16}{25}} = \frac{6 \cdot 25}{5 \cdot 16} = \frac{30}{16} = \frac{15}{8} \] ### Step 4: Let \( \alpha = \sin^{-1}(\frac{5}{13}) \) From this, we have: \[ \sin(\alpha) = \frac{5}{13} \] Using the Pythagorean theorem, we find \( \cos(\alpha) \): \[ \cos(\alpha) = \sqrt{1 - \sin^2(\alpha)} = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \sqrt{1 - \frac{25}{169}} = \sqrt{\frac{144}{169}} = \frac{12}{13} \] ### Step 5: Calculate \( \tan(\alpha) \) Now, we can find \( \tan(\alpha) \): \[ \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12} \] ### Step 6: Use the formula for \( \tan(2\theta + \alpha) \) Now we can use the formula: \[ \tan(2\theta + \alpha) = \frac{\tan(2\theta) + \tan(\alpha)}{1 - \tan(2\theta) \tan(\alpha)} \] Substituting the values: \[ \tan(2\theta + \alpha) = \frac{\frac{15}{8} + \frac{5}{12}}{1 - \left(\frac{15}{8} \cdot \frac{5}{12}\right)} \] ### Step 7: Find a common denominator and simplify Finding a common denominator for the numerator: \[ \frac{15}{8} + \frac{5}{12} = \frac{15 \cdot 3}{24} + \frac{5 \cdot 2}{24} = \frac{45 + 10}{24} = \frac{55}{24} \] Calculating the denominator: \[ 1 - \left(\frac{15}{8} \cdot \frac{5}{12}\right) = 1 - \frac{75}{96} = \frac{96 - 75}{96} = \frac{21}{96} \] ### Step 8: Final calculation Now substituting these back: \[ \tan(2\theta + \alpha) = \frac{\frac{55}{24}}{\frac{21}{96}} = \frac{55 \cdot 96}{24 \cdot 21} = \frac{55 \cdot 4}{21} = \frac{220}{21} \] Thus, the final answer is: \[ \boxed{\frac{220}{21}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan(2tan^(-1)(1/5))

The value of tan(2tan^(-1)""(1)/(5)-(pi)/(4)) is

The value of (2 tan ^(-1) ((3)/(5)) + sin ^(-1) (( 5)/( 13))) is equal to:

The value of tan(tan^(-1)5+"cot"^(-1)(1)/(3)) is :

The value of tan[sin^(-1) (3/5)+tan^(-1) (2/3)] is

The value of tan (2 "tan"^(-1)(1)/(5)-(pi)/(4)) is

Write the value of tan(2tan^(-1)((1)/(5)))