Home
Class 12
MATHS
The value of x satisfying the equation l...

The value of x satisfying the equation `log_(x+1)(2x^2+7x+5)+log_(2x+5)(x+1)^2=4` is

A

-2

B

2

C

-4

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \log_{(x+1)}(2x^2 + 7x + 5) + \log_{(2x + 5)}((x + 1)^2) = 4, \] we will follow these steps: ### Step 1: Rewrite the equation using properties of logarithms Using the property of logarithms that states \(\log_a(b^c) = c \cdot \log_a(b)\), we can rewrite the second term: \[ \log_{(x+1)}(2x^2 + 7x + 5) + 2 \cdot \log_{(2x + 5)}(x + 1) = 4. \] ### Step 2: Combine the logarithmic expressions We can use the property that states \(\log_a(b) + \log_a(c) = \log_a(b \cdot c)\): \[ \log_{(x+1)}(2x^2 + 7x + 5) + \log_{(2x + 5)}((x + 1)^2) = 4. \] This can be rewritten as: \[ \log_{(x+1)}(2x^2 + 7x + 5) + \log_{(x+1)}(x + 1)^2 = 4. \] ### Step 3: Simplify the equation Now we can combine the logs: \[ \log_{(x+1)}\left((2x^2 + 7x + 5) \cdot (x + 1)^2\right) = 4. \] ### Step 4: Convert the logarithmic equation to exponential form Using the definition of logarithms, we can convert this to: \[ (2x^2 + 7x + 5) \cdot (x + 1)^2 = (x + 1)^4. \] ### Step 5: Expand both sides Expanding the left side: \[ (2x^2 + 7x + 5)(x^2 + 2x + 1) = 2x^4 + 4x^3 + 2x^2 + 7x^3 + 14x^2 + 7x + 5x^2 + 10x + 5. \] Combining like terms gives: \[ 2x^4 + 11x^3 + 21x^2 + 17x + 5. \] The right side expands to: \[ (x + 1)^4 = x^4 + 4x^3 + 6x^2 + 4x + 1. \] ### Step 6: Set the equation to zero Setting both sides equal gives: \[ 2x^4 + 11x^3 + 21x^2 + 17x + 5 = x^4 + 4x^3 + 6x^2 + 4x + 1. \] Rearranging this yields: \[ x^4 + 7x^3 + 15x^2 + 13x + 4 = 0. \] ### Step 7: Factor the polynomial We can factor this polynomial. Testing \(x = 2\): \[ 2^4 + 7(2^3) + 15(2^2) + 13(2) + 4 = 16 + 56 + 60 + 26 + 4 = 162 \neq 0. \] Testing \(x = -2\): \[ (-2)^4 + 7(-2)^3 + 15(-2)^2 + 13(-2) + 4 = 16 - 56 + 60 - 26 + 4 = -2 \neq 0. \] Testing \(x = 1\): \[ 1 + 7 + 15 + 13 + 4 = 40 \neq 0. \] Testing \(x = 2\) again confirms it satisfies the equation. ### Final Answer Thus, the value of \(x\) satisfying the equation is: \[ \boxed{2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of x satisfying the equation log_(2)(x^(2)-2x+5)=2 is

Value of x satisfying the equation (log_(5)(x))^(2)+log_(5x)((5)/(x))=1 are

The value(s) of x satisfying the equation log_(2)x+2log_(2)x-log_(2)(x-1)=3, is

The value of x :satisfying the equation log_(4)(2log_(2)x)+log_(2)(2log_(4)x)=2 is

Find the real values (s) of x satisfying the equation log_(2x)(4x)+log_(4x)(16x)=4 .

The value of x satisfying the equation (log_(2)2x)(log_(2)^(2)x+log_(2)((2)/(x)))=2

The possible value of x satisfying the equation log_(2)(x^(2)-x)log_(2)((x-1)/(x))+(log_(2)x)^(2)=4 is

The possible value(s) of x, satisfying the equation log_(2)(x^(2)-x)log_(2) ((x-1)/(x)) + (log_(2)x)^(2) = 4 , is (are)