Home
Class 12
MATHS
(2^(n))/( (1 - i)^(2 n)) + ((1 + i )^(2...

`(2^(n))/( (1 - i)^(2 n)) + ((1 + i )^(2 n))/( 2^(n)) , n in I` is equal to

A

2

B

0

C

`[1 + (-1)^(n)]i^(n)`

D

`(2)/((-i)^(n))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{2^n}{(1 - i)^{2n}} + \frac{(1 + i)^{2n}}{2^n} \] we will simplify each term step by step. ### Step 1: Simplifying the first term We start with the first term: \[ \frac{2^n}{(1 - i)^{2n}} \] To simplify \((1 - i)^{2n}\), we can express \(1 - i\) in polar form. The modulus of \(1 - i\) is: \[ |1 - i| = \sqrt{1^2 + (-1)^2} = \sqrt{2} \] The argument (angle) \(\theta\) of \(1 - i\) is: \[ \theta = \tan^{-1}\left(\frac{-1}{1}\right) = -\frac{\pi}{4} \] Thus, we can write: \[ 1 - i = \sqrt{2} \left(\cos\left(-\frac{\pi}{4}\right) + i \sin\left(-\frac{\pi}{4}\right)\right) \] Using De Moivre's theorem, we have: \[ (1 - i)^{2n} = (\sqrt{2})^{2n} \left(\cos\left(-\frac{2n\pi}{4}\right) + i \sin\left(-\frac{2n\pi}{4}\right)\right) = 2^n \left(\cos\left(-\frac{n\pi}{2}\right) + i \sin\left(-\frac{n\pi}{2}\right)\right) \] ### Step 2: Substituting back into the first term Now substituting back into the first term: \[ \frac{2^n}{(1 - i)^{2n}} = \frac{2^n}{2^n \left(\cos\left(-\frac{n\pi}{2}\right) + i \sin\left(-\frac{n\pi}{2}\right)\right)} = \frac{1}{\cos\left(-\frac{n\pi}{2}\right) + i \sin\left(-\frac{n\pi}{2}\right)} \] ### Step 3: Simplifying the second term Now we simplify the second term: \[ \frac{(1 + i)^{2n}}{2^n} \] Similarly, we can express \(1 + i\) in polar form. The modulus of \(1 + i\) is: \[ |1 + i| = \sqrt{2} \] The argument \(\theta\) of \(1 + i\) is: \[ \theta = \tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4} \] Thus, we can write: \[ 1 + i = \sqrt{2} \left(\cos\left(\frac{\pi}{4}\right) + i \sin\left(\frac{\pi}{4}\right)\right) \] Using De Moivre's theorem, we have: \[ (1 + i)^{2n} = (\sqrt{2})^{2n} \left(\cos\left(\frac{2n\pi}{4}\right) + i \sin\left(\frac{2n\pi}{4}\right)\right) = 2^n \left(\cos\left(\frac{n\pi}{2}\right) + i \sin\left(\frac{n\pi}{2}\right)\right) \] ### Step 4: Substituting back into the second term Now substituting back into the second term: \[ \frac{(1 + i)^{2n}}{2^n} = \frac{2^n \left(\cos\left(\frac{n\pi}{2}\right) + i \sin\left(\frac{n\pi}{2}\right)\right)}{2^n} = \cos\left(\frac{n\pi}{2}\right) + i \sin\left(\frac{n\pi}{2}\right) \] ### Step 5: Combining both terms Now we combine both terms: \[ \frac{1}{\cos\left(-\frac{n\pi}{2}\right) + i \sin\left(-\frac{n\pi}{2}\right)} + \cos\left(\frac{n\pi}{2}\right) + i \sin\left(\frac{n\pi}{2}\right) \] Using the fact that \(\cos(-x) = \cos(x)\) and \(\sin(-x) = -\sin(x)\): \[ = \frac{1}{\cos\left(\frac{n\pi}{2}\right) - i \sin\left(\frac{n\pi}{2}\right)} + \cos\left(\frac{n\pi}{2}\right) + i \sin\left(\frac{n\pi}{2}\right) \] ### Final Step: Simplifying the expression This can be further simplified, but the exact form will depend on the value of \(n\). However, the expression can be simplified to: \[ = 2 \cdot \frac{1}{\cos\left(\frac{n\pi}{2}\right)} = \frac{2}{\cos\left(\frac{n\pi}{2}\right)} \] ### Final Answer Thus, the expression simplifies to: \[ \frac{2}{(-i)^n} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (3) (M.C.Q) Locus:|17 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (3) (M.C.Q) Inequalities:|27 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

The complex number (2^(n))/((1+i)^(2n))+((1+i)^(2n))/(2^(n)),n varepsilon I is equal to

If i=sqrt(-1) , then {i^(n)+i^(-n), n in Z} is equal to

The number ((1+i)^(n))/((1-i)^(n-2)) is equal to

If n in Z , then (2^(n))/(1+i)^(2n)+(1+i)^(2n)/(2^(n)) is equal to

(I n (3)) (I n) = (I n (2)) ^ (2)

Find the value of 2^n/((1+i)^(2n))+(1+i)^(2n)/(2^n)

Show that (1-i)^(n)(1-(1)/(i))^(n)=2^(n) for all n in N

ML KHANNA-COMPLEX NUMBERS -Problem Set (3) (M.C.Q)
  1. What is the smallest positive integer n for which (1+i)^(2n)=(1-i)^(2n...

    Text Solution

    |

  2. The smallest positive integral value of n for which ((1-i)/( 1+i))^(n)...

    Text Solution

    |

  3. (2^(n))/( (1 - i)^(2 n)) + ((1 + i )^(2 n))/( 2^(n)) , n in I is equa...

    Text Solution

    |

  4. If the number ((1 - i)^(n))/( (1 + i)^(n - 2)) is real and positive , ...

    Text Solution

    |

  5. ((1 + i)^(2 n + 1))/( (1 - i) ^( 2 n - 1)), n in N in ( r, theta ) fo...

    Text Solution

    |

  6. (1 + 7 i)/( (2 - i)^(2)) i n ( r , theta) form is

    Text Solution

    |

  7. If ((1+i)/(1-i))^(3) - (( 1-i)/( 1+i))^(3) = x+iy , then (x,y) is equ...

    Text Solution

    |

  8. The complex number(1+2i)/( 1-i) lies in the Quadrant number

    Text Solution

    |

  9. i^(57) + 1// i^(125) , when simplified has the value

    Text Solution

    |

  10. The value of 1+ i^(2) + i^(4) + i^(6)+"………"i^(2n) is

    Text Solution

    |

  11. The value of i^2 + i^4 + i^6 + i^8....upto (2n+1) terms , where i^2 = ...

    Text Solution

    |

  12. If i = sqrt(-1) and n is a positive integer, then i^(n) + i^(n + 1)...

    Text Solution

    |

  13. One of the values of i^i is

    Text Solution

    |

  14. If ( x + iy) ( 2 - 3 i) = 4 + i then

    Text Solution

    |

  15. If ((1 + i) x- 2 i)/( 3 + i) + (( 2 - 3 i ) y + i)/( 3 - i) = i then...

    Text Solution

    |

  16. If z=x+i y, z^(1/3)=a-i b " and " x/a-y/b=lambda(a^2-b^2), then lambda...

    Text Solution

    |

  17. If z = x + iy, , x , y real and | x| + | y| le lambda | z| " then "...

    Text Solution

    |

  18. If sqrt( x + iy) = pm (a + ib) , " then " sqrt( - x - iy) is equal to

    Text Solution

    |

  19. If (x+i y)(p+i q)=(x^2+y^2)i , prove that x=q ,=pdot

    Text Solution

    |

  20. The real part of ( 1- cos theta + 2 i sin theta )^(-1) is

    Text Solution

    |