Home
Class 12
MATHS
If the number ((1 - i)^(n))/( (1 + i)^(n...

If the number `((1 - i)^(n))/( (1 + i)^(n - 2))` is real and positive , then n is
Put the following numbers in trigonometrical form, that is, int he form `( r, theta)` where r is a positive real number and ` - pi lt theta le pi`

A

any integer

B

any even integer

C

any odd integer

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( n \) for which the expression \[ \frac{(1 - i)^n}{(1 + i)^{n - 2}} \] is real and positive. We will analyze the expression step by step. ### Step 1: Convert \( 1 - i \) and \( 1 + i \) to Trigonometric Form First, we need to express \( 1 - i \) and \( 1 + i \) in polar (trigonometric) form. 1. **For \( 1 - i \)**: - The modulus \( r \) is given by: \[ r = \sqrt{1^2 + (-1)^2} = \sqrt{2} \] - The argument \( \theta \) is: \[ \theta = \tan^{-1}\left(\frac{-1}{1}\right) = -\frac{\pi}{4} \] - Therefore, in trigonometric form: \[ 1 - i = \sqrt{2} \left( \cos\left(-\frac{\pi}{4}\right) + i \sin\left(-\frac{\pi}{4}\right) \right) \] 2. **For \( 1 + i \)**: - The modulus \( r \) is: \[ r = \sqrt{1^2 + 1^2} = \sqrt{2} \] - The argument \( \theta \) is: \[ \theta = \tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4} \] - Therefore, in trigonometric form: \[ 1 + i = \sqrt{2} \left( \cos\left(\frac{\pi}{4}\right) + i \sin\left(\frac{\pi}{4}\right) \right) \] ### Step 2: Substitute into the Expression Now we substitute these forms into the original expression: \[ \frac{(1 - i)^n}{(1 + i)^{n - 2}} = \frac{\left(\sqrt{2} \text{cis}\left(-\frac{\pi}{4}\right)\right)^n}{\left(\sqrt{2} \text{cis}\left(\frac{\pi}{4}\right)\right)^{n - 2}} \] This simplifies to: \[ \frac{(\sqrt{2})^n \text{cis}\left(-\frac{n\pi}{4}\right)}{(\sqrt{2})^{n - 2} \text{cis}\left(\frac{(n - 2)\pi}{4}\right)} = \frac{(\sqrt{2})^n}{(\sqrt{2})^{n - 2}} \cdot \text{cis}\left(-\frac{n\pi}{4} - \frac{(n - 2)\pi}{4}\right) \] ### Step 3: Simplify the Expression The modulus simplifies to: \[ (\sqrt{2})^2 = 2 \] The argument simplifies to: \[ -\frac{n\pi}{4} - \frac{(n - 2)\pi}{4} = -\frac{n\pi + (n - 2)\pi}{4} = -\frac{2n - 2}{4}\pi = -\frac{(n - 1)\pi}{2} \] Thus, we have: \[ 2 \text{cis}\left(-\frac{(n - 1)\pi}{2}\right) \] ### Step 4: Condition for Real and Positive For the expression to be real and positive, the argument must be \( 0 \) or \( 2k\pi \) for some integer \( k \). This gives us: \[ -\frac{(n - 1)\pi}{2} = 2k\pi \] Solving for \( n \): \[ n - 1 = -4k \implies n = 1 - 4k \] ### Step 5: Determine Possible Values of \( n \) From this equation, we see that \( n \) can take values of the form \( 1, -3, -7, \ldots \) (i.e., \( n \) can be any integer of the form \( 1 - 4k \)). ### Conclusion Thus, \( n \) can be any integer of the form \( 1 - 4k \), where \( k \) is an integer.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (3) (M.C.Q) Locus:|17 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (3) (M.C.Q) Inequalities:|27 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

Put the complex number (1+7i)/((2-i)^(2)) in the form r(cos theta+is int h eta) where r is a positive real number and * pi

If the number (1-i)^n/(1+i)^(n-2) is real and positive then n is (a) Any Integer (b) Any odd Integer (c) Any even Integer (d) None of these

If (3+2i sin theta)/(1-2i sin theta) is a real number and 0

If (3+2i sin theta)/(1-2i sin theta) is a real number and 0

Express the following complex numbers in the form r(cos theta+i sin theta):1+i tan alpha( ii) tan alpha-i

ML KHANNA-COMPLEX NUMBERS -Problem Set (3) (M.C.Q)
  1. The smallest positive integral value of n for which ((1-i)/( 1+i))^(n)...

    Text Solution

    |

  2. (2^(n))/( (1 - i)^(2 n)) + ((1 + i )^(2 n))/( 2^(n)) , n in I is equa...

    Text Solution

    |

  3. If the number ((1 - i)^(n))/( (1 + i)^(n - 2)) is real and positive , ...

    Text Solution

    |

  4. ((1 + i)^(2 n + 1))/( (1 - i) ^( 2 n - 1)), n in N in ( r, theta ) fo...

    Text Solution

    |

  5. (1 + 7 i)/( (2 - i)^(2)) i n ( r , theta) form is

    Text Solution

    |

  6. If ((1+i)/(1-i))^(3) - (( 1-i)/( 1+i))^(3) = x+iy , then (x,y) is equ...

    Text Solution

    |

  7. The complex number(1+2i)/( 1-i) lies in the Quadrant number

    Text Solution

    |

  8. i^(57) + 1// i^(125) , when simplified has the value

    Text Solution

    |

  9. The value of 1+ i^(2) + i^(4) + i^(6)+"………"i^(2n) is

    Text Solution

    |

  10. The value of i^2 + i^4 + i^6 + i^8....upto (2n+1) terms , where i^2 = ...

    Text Solution

    |

  11. If i = sqrt(-1) and n is a positive integer, then i^(n) + i^(n + 1)...

    Text Solution

    |

  12. One of the values of i^i is

    Text Solution

    |

  13. If ( x + iy) ( 2 - 3 i) = 4 + i then

    Text Solution

    |

  14. If ((1 + i) x- 2 i)/( 3 + i) + (( 2 - 3 i ) y + i)/( 3 - i) = i then...

    Text Solution

    |

  15. If z=x+i y, z^(1/3)=a-i b " and " x/a-y/b=lambda(a^2-b^2), then lambda...

    Text Solution

    |

  16. If z = x + iy, , x , y real and | x| + | y| le lambda | z| " then "...

    Text Solution

    |

  17. If sqrt( x + iy) = pm (a + ib) , " then " sqrt( - x - iy) is equal to

    Text Solution

    |

  18. If (x+i y)(p+i q)=(x^2+y^2)i , prove that x=q ,=pdot

    Text Solution

    |

  19. The real part of ( 1- cos theta + 2 i sin theta )^(-1) is

    Text Solution

    |

  20. The number of solutions of the equation z^2=barz is

    Text Solution

    |