Home
Class 12
MATHS
((1 + i)^(2 n + 1))/( (1 - i) ^( 2 n - 1...

`((1 + i)^(2 n + 1))/( (1 - i) ^( 2 n - 1)), n in N` in `( r, theta )` form is

A

(2,0)

B

`(2 , pi//2)`

C

`(2,pi)`

D

`(2, pi//4)`

Text Solution

AI Generated Solution

The correct Answer is:
To express the given expression \(\frac{(1 + i)^{2n + 1}}{(1 - i)^{2n - 1}}\) in the polar form \((r, \theta)\), we will follow these steps: ### Step 1: Convert \(1 + i\) and \(1 - i\) to Polar Form First, we need to find the polar forms of \(1 + i\) and \(1 - i\). 1. **Magnitude of \(1 + i\)**: \[ |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2} \] 2. **Argument of \(1 + i\)**: \[ \theta_1 = \tan^{-1}\left(\frac{1}{1}\right) = \frac{\pi}{4} \] Thus, the polar form of \(1 + i\) is: \[ 1 + i = \sqrt{2} \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) \] 3. **Magnitude of \(1 - i\)**: \[ |1 - i| = \sqrt{1^2 + (-1)^2} = \sqrt{2} \] 4. **Argument of \(1 - i\)**: \[ \theta_2 = \tan^{-1}\left(\frac{-1}{1}\right) = -\frac{\pi}{4} \] Thus, the polar form of \(1 - i\) is: \[ 1 - i = \sqrt{2} \left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right) \] ### Step 2: Raise to the Powers Now we raise both expressions to their respective powers. 1. **Numerator**: \[ (1 + i)^{2n + 1} = \left(\sqrt{2}\right)^{2n + 1} \left(\cos\left((2n + 1)\frac{\pi}{4}\right) + i\sin\left((2n + 1)\frac{\pi}{4}\right)\right) \] \[ = 2^{(2n + 1)/2} \left(\cos\left((2n + 1)\frac{\pi}{4}\right) + i\sin\left((2n + 1)\frac{\pi}{4}\right)\right) \] 2. **Denominator**: \[ (1 - i)^{2n - 1} = \left(\sqrt{2}\right)^{2n - 1} \left(\cos\left((2n - 1)\left(-\frac{\pi}{4}\right)\right) + i\sin\left((2n - 1)\left(-\frac{\pi}{4}\right)\right)\right) \] \[ = 2^{(2n - 1)/2} \left(\cos\left(-(2n - 1)\frac{\pi}{4}\right) + i\sin\left(-(2n - 1)\frac{\pi}{4}\right)\right) \] ### Step 3: Combine the Results Now we can combine the results from the numerator and denominator: \[ \frac{(1 + i)^{2n + 1}}{(1 - i)^{2n - 1}} = \frac{2^{(2n + 1)/2}}{2^{(2n - 1)/2}} \cdot \frac{\cos\left((2n + 1)\frac{\pi}{4}\right) + i\sin\left((2n + 1)\frac{\pi}{4}\right)}{\cos\left(-(2n - 1)\frac{\pi}{4}\right) + i\sin\left(-(2n - 1)\frac{\pi}{4}\right)} \] ### Step 4: Simplify Magnitudes and Angles 1. **Magnitude**: \[ = 2^{\frac{(2n + 1) - (2n - 1)}{2}} = 2^{\frac{2}{2}} = 2 \] 2. **Angle**: \[ = \left((2n + 1)\frac{\pi}{4} - (-(2n - 1)\frac{\pi}{4})\right) = \left((2n + 1 + 2n - 1)\frac{\pi}{4}\right) = \left(4n\frac{\pi}{4}\right) = n\pi \] ### Final Result Thus, the expression in polar form \((r, \theta)\) is: \[ (2, n\pi) \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (3) (M.C.Q) Locus:|17 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (3) (M.C.Q) Inequalities:|27 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (2) (Fill in the blanks)|2 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

The number ((1+i)^(n))/((1-i)^(n-2)) is equal to

The expression ((1+i)^(n))/((1-i)^(n-2)) equals

If x + iy = (1)/(1-cos theta + 2 i sin theta), theta ne 2n pi, n in I , then maximum value of x is

What is the modulus of the complex number i^(2n+1) (-i)^(2n-1) , where n in N and i=sqrt(-1) ?

Find the value of ( i^2 + n ) ( i^2 + n - 1 ) ( i^2 + n - 2 ) .......( i^2 + 1 )

ML KHANNA-COMPLEX NUMBERS -Problem Set (3) (M.C.Q)
  1. (2^(n))/( (1 - i)^(2 n)) + ((1 + i )^(2 n))/( 2^(n)) , n in I is equa...

    Text Solution

    |

  2. If the number ((1 - i)^(n))/( (1 + i)^(n - 2)) is real and positive , ...

    Text Solution

    |

  3. ((1 + i)^(2 n + 1))/( (1 - i) ^( 2 n - 1)), n in N in ( r, theta ) fo...

    Text Solution

    |

  4. (1 + 7 i)/( (2 - i)^(2)) i n ( r , theta) form is

    Text Solution

    |

  5. If ((1+i)/(1-i))^(3) - (( 1-i)/( 1+i))^(3) = x+iy , then (x,y) is equ...

    Text Solution

    |

  6. The complex number(1+2i)/( 1-i) lies in the Quadrant number

    Text Solution

    |

  7. i^(57) + 1// i^(125) , when simplified has the value

    Text Solution

    |

  8. The value of 1+ i^(2) + i^(4) + i^(6)+"………"i^(2n) is

    Text Solution

    |

  9. The value of i^2 + i^4 + i^6 + i^8....upto (2n+1) terms , where i^2 = ...

    Text Solution

    |

  10. If i = sqrt(-1) and n is a positive integer, then i^(n) + i^(n + 1)...

    Text Solution

    |

  11. One of the values of i^i is

    Text Solution

    |

  12. If ( x + iy) ( 2 - 3 i) = 4 + i then

    Text Solution

    |

  13. If ((1 + i) x- 2 i)/( 3 + i) + (( 2 - 3 i ) y + i)/( 3 - i) = i then...

    Text Solution

    |

  14. If z=x+i y, z^(1/3)=a-i b " and " x/a-y/b=lambda(a^2-b^2), then lambda...

    Text Solution

    |

  15. If z = x + iy, , x , y real and | x| + | y| le lambda | z| " then "...

    Text Solution

    |

  16. If sqrt( x + iy) = pm (a + ib) , " then " sqrt( - x - iy) is equal to

    Text Solution

    |

  17. If (x+i y)(p+i q)=(x^2+y^2)i , prove that x=q ,=pdot

    Text Solution

    |

  18. The real part of ( 1- cos theta + 2 i sin theta )^(-1) is

    Text Solution

    |

  19. The number of solutions of the equation z^2=barz is

    Text Solution

    |

  20. The number of solutions of z^(2) + 2 bar(z) = 0 is

    Text Solution

    |