Home
Class 12
MATHS
If |ak|< 3, 1 le k le n, then all comple...

If `|a_k|< 3, 1 le k le n,` then all complex numbers `z` satisfying equation `1+a_1z+a_2z^2+..........+a_nz^n=0`

A

lie outside the circle `|z| = (1)/(4)`

B

lie inside the circle `|z| = (1)/(4)`

C

lie on the circle `|z| = (1)/(4)`

D

lie in `(1)/(3) lt |z| lt (1)/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (3) (M.C.Q) Inequalities:|27 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (3) Fill in the blanks |5 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (3) (M.C.Q) |42 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

Let (1+x^2^2)^2(1+x)^n = sum _(k=0)^(n+4)a_k x^k. If a_1,a_2,a_3 are in rithmetic progression find n.

Let ({:(n),(k):}) denote ""^(n)C_k and If A_k=sum_(i=0)^9({:(9),(i):})[{:(" 12"),(12-k+i):}]+sum_(i=0)^8({:(8),(i):})[{:(" 13"),(13-k+i):}] and A_4 -A_3= 190p ,then p is equal to

If (a)/(k),a, ak are the roots of x^(3)-px^(2)+qx-r=0 then a=

If a_1,a_2,a_3……..a_n are in H.P. and f(k) = sum_(r=1)^na_r-a_k then (f(1))/a_1, (f(2))/a_3 ….f(n)/a_n are (A) A.P. (B) G.P. (C) H.P. (D) none of these

If a_1,a_2, a_3………. are in H.P. and f(k) =sum_(r=1)^n a_r-a_k, the a_1/(f(1)), a_2/(f(2)), a_3/(f(3)), …….., a_n/(f(n)) are in (A) A.P. (B) G.P (C) H.P. (D) none of these

If 27ak^(2)<4(h-2a)^(3) satisfied then three real and distinct normal are drawn from point (h,k) on parabola y^(2)=4ax

Let C_k = .^nC_k, for 0 lt= k lt=n and A_k = ((C_(k-1)^2,0), (0,C_k^2)) for k gt= 1 and A_1+A_2+...+A_n = ((k_1,0), (0,k_2)), then

If A_1=[0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0],A_2=[0 0 0i0 0-i0 0i0 0-i0 0 0],t h e nA_i A_k+A_k A_i is equal to 2lifi=k b. Oifi!=k c. 2lifi!=k d. O always

ML KHANNA-COMPLEX NUMBERS -Problem Set (3) (M.C.Q) Locus:
  1. If the imaginary part of (2z + 1)/(iz + 1) is -4, then the locus of th...

    Text Solution

    |

  2. If I m((z-1)/(e^(thetai))+(e^(thetai))/(z-1))=0 , then find the locus ...

    Text Solution

    |

  3. Locus of the point z satisfying the equation |iz-1|+|z-i|=2 is

    Text Solution

    |

  4. The complex numbers z = x + iy which satisfy the equation |(z-5i)/(z+5...

    Text Solution

    |

  5. The locus of the points z satisfying the condition arg ((z-1)/(z+1))=p...

    Text Solution

    |

  6. z1, z2, z3,z4 are distinct complex numbers representing the vertices o...

    Text Solution

    |

  7. If 'z, lies on the circle |z-2i|=2sqrt2, then the value of arg((z...

    Text Solution

    |

  8. The region of the complex plane for which |(z-a)/(z+veca)|=1,(Re(a) !=...

    Text Solution

    |

  9. If "Re"((z-8i)/(z+6))=0, then lies on the curve

    Text Solution

    |

  10. The locus represented by |z-1|=|z+i| is:

    Text Solution

    |

  11. If | bar(z)| = 25 then the points representing the number - 1 + 75 b...

    Text Solution

    |

  12. If P is the affix of z in the Argand diagram and P moves so that (z -...

    Text Solution

    |

  13. If w=alpha+ibeta where Beta 0 and z ne 1 satisfies the condition that...

    Text Solution

    |

  14. If |ak|< 3, 1 le k le n, then all complex numbers z satisfying equatio...

    Text Solution

    |

  15. Prove that the distance of the roots of the equation |sintheta1|z^3+|s...

    Text Solution

    |

  16. If z^(2) + z | z| + | z|^(2) = 0 , then the locus of z is

    Text Solution

    |

  17. If alpha+ibeta=tan^(-1) (z), z=x+iy and alpha is constant, the locus o...

    Text Solution

    |