Home
Class 12
MATHS
If z is a complex number of unit modulus...

If z is a complex number of unit modulus and argument ` theta` then arg `((1 + z)/( 1 - bar(z)))= `

A

`- theta`

B

`(pi)/(2)+ theta`

C

`theta`

D

` pi- theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the argument of the complex number \(\frac{1 + z}{1 - \bar{z}}\) given that \(z\) is a complex number of unit modulus and its argument is \(\theta\). ### Step-by-Step Solution: 1. **Express \(z\) in terms of its modulus and argument**: Since \(z\) is a complex number of unit modulus, we can express it as: \[ z = e^{i\theta} = \cos(\theta) + i\sin(\theta) \] where \(\bar{z}\) (the conjugate of \(z\)) is: \[ \bar{z} = \cos(\theta) - i\sin(\theta) \] 2. **Substitute \(z\) and \(\bar{z}\) into the expression**: We need to evaluate: \[ \frac{1 + z}{1 - \bar{z}} = \frac{1 + (\cos(\theta) + i\sin(\theta))}{1 - (\cos(\theta) - i\sin(\theta))} \] This simplifies to: \[ \frac{1 + \cos(\theta) + i\sin(\theta)}{1 - \cos(\theta) + i\sin(\theta)} \] 3. **Multiply numerator and denominator by the conjugate of the denominator**: To make the denominator real, multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(1 + \cos(\theta) + i\sin(\theta))(1 - \cos(\theta) - i\sin(\theta))}{(1 - \cos(\theta) + i\sin(\theta))(1 - \cos(\theta) - i\sin(\theta))} \] 4. **Simplify the denominator**: The denominator becomes: \[ (1 - \cos(\theta))^2 + \sin^2(\theta) = 1 - 2\cos(\theta) + \cos^2(\theta) + \sin^2(\theta) = 2(1 - \cos(\theta)) \] 5. **Simplify the numerator**: The numerator expands to: \[ (1 + \cos(\theta))(1 - \cos(\theta)) - \sin^2(\theta) + i\sin(\theta)(1 - \cos(\theta) + 1 + \cos(\theta)) \] Simplifying gives: \[ (1 - \cos^2(\theta) - \sin^2(\theta)) + i\sin(\theta)(2) = 0 + 2i\sin(\theta) \] 6. **Combine the results**: Thus, we have: \[ \frac{2i\sin(\theta)}{2(1 - \cos(\theta))} = \frac{i\sin(\theta)}{1 - \cos(\theta)} \] 7. **Find the argument**: The argument of a complex number \(\frac{a + bi}{c}\) is given by: \[ \arg\left(\frac{a + bi}{c}\right) = \arg(a + bi) + \arg(c) \] Here, since \(c\) is real, we have: \[ \arg\left(\frac{i\sin(\theta)}{1 - \cos(\theta)}\right) = \arg(i\sin(\theta)) = \frac{\pi}{2} \text{ (since } \sin(\theta) > 0\text{)} \] 8. **Final result**: Therefore, we conclude: \[ \arg\left(\frac{1 + z}{1 - \bar{z}}\right) = \frac{\pi}{2} + \theta \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ML KHANNA|Exercise Miscellaneous Exercise (Matching Entries )|9 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Assertion / Reason |2 Videos
  • COMPLEX NUMBERS

    ML KHANNA|Exercise Problem Set (4) (fill in the blanks )|2 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos
  • CONCEPTS OF SET THEORY

    ML KHANNA|Exercise Self Assessment Test|13 Videos

Similar Questions

Explore conceptually related problems

If z is a complex number of unit modulus and argument q, then arg ((1+z)/(1+bar(z))) equal (1)(pi)/(2)-theta (2) theta(3)pi-theta(4)-theta

If z is a complex number of unit modulus and argument theta , then the real part of (z(1-barz))/(barz(1+z)) , is

Ifa complex number z has modulus 1 and argument (pi)/(3), then z^(2)+z

Suppose z is a complex number such that z ne -1, |z| = 1, and arg(z) = theta . Let omega = (z(1-bar(z)))/(bar(z)(1+z)) , then Re (omega) is equal to

Suppose z is a complex number such that z ne -1, |z| = 1 and arg(z) = theta . Let w = (z(1-bar(z)))/(bar(z)(1+z)) , then Re(w) is equal to

Find the modulus and the arguments of the complex number z=-sqrt(3)+i

ML KHANNA-COMPLEX NUMBERS -Self Assessment Test
  1. If z = (4)/(1 - i) then bar(z) is equal to

    Text Solution

    |

  2. If one root of the equation x^2 + (1 - 3i) x - 2(1+i) = 0 is -1 +i, th...

    Text Solution

    |

  3. Convert the complex number z=(i-1)/(cospi/3+isinpi/3)in the polar form...

    Text Solution

    |

  4. If z(1) , z(2), z(3) are three complex numbers in A.P., then they lie ...

    Text Solution

    |

  5. The complex number(1+2i)/( 1-i) lies in the Quadrant number

    Text Solution

    |

  6. If xr=cos(pi/(2^r))+isin(pi/(2^r)) then x1,x2,x3,.....oo

    Text Solution

    |

  7. If p(x,y) denotes z = x + iy in Argand plane and | (z - 1)/( z + 2i)|...

    Text Solution

    |

  8. If omega (!= 1) is a cube root of unity, then the sum of the series S ...

    Text Solution

    |

  9. The smallest positive integral value of 'n' such that [(1+sin\ pi/8 + ...

    Text Solution

    |

  10. If 1 , omega and omega^(2) are the cube roots of unity, then the valu...

    Text Solution

    |

  11. If Z=ilog(2-sqrt(3)),then cos(Z)=

    Text Solution

    |

  12. If z = |{:(1 , 1 + 2i, - 5i),(1 - 2i,-3,5+3i),(5i,5-3i,7):}|, then (i=...

    Text Solution

    |

  13. sum(k=1)^6 (sin,(2pik)/7 -icos, (2pik)/7)=?

    Text Solution

    |

  14. Let z be a complex number such that the imaginary part of z is nonzero...

    Text Solution

    |

  15. If z ne 1 and (z^(2))/(z-1) is real, the point represented by the comp...

    Text Solution

    |

  16. If omega(ne 1) be a cube root of unity and (1+omega)^(7)=A+Bomega, the...

    Text Solution

    |

  17. Let z(1) and z(2) be two distinct complex numbers and z=(1-t)z(1)+iz(2...

    Text Solution

    |

  18. If z is any complex number satisfying | z - 3- 2i | le 1 then the min...

    Text Solution

    |

  19. Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numb...

    Text Solution

    |

  20. If z is a complex number of unit modulus and argument theta then arg...

    Text Solution

    |