Home
Class 12
MATHS
Prove that log(2)17.log(1//5)2.log(3).(1...

Prove that `log_(2)17.log_(1//5)2.log_(3).(1)/(5)gt2`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \log_{2} 17 \cdot \log_{\frac{1}{5}} 2 \cdot \log_{3} \frac{1}{5} > 2 \), we will follow these steps: ### Step 1: Rewrite the logarithms We can use the change of base formula for logarithms, which states that \( \log_{a} b = \frac{\log_{c} b}{\log_{c} a} \). Here, we will use base 10 for convenience. \[ \log_{2} 17 = \frac{\log 17}{\log 2} \] \[ \log_{\frac{1}{5}} 2 = \log_{5^{-1}} 2 = -\log_{5} 2 = -\frac{\log 2}{\log 5} \] \[ \log_{3} \frac{1}{5} = \log_{3} 5^{-1} = -\log_{3} 5 = -\frac{\log 5}{\log 3} \] ### Step 2: Substitute the rewritten logarithms into the inequality Now substitute these expressions back into the original inequality: \[ \log_{2} 17 \cdot \log_{\frac{1}{5}} 2 \cdot \log_{3} \frac{1}{5} = \left( \frac{\log 17}{\log 2} \right) \cdot \left( -\frac{\log 2}{\log 5} \right) \cdot \left( -\frac{\log 5}{\log 3} \right) \] ### Step 3: Simplify the expression The negative signs will cancel out: \[ = \frac{\log 17}{\log 2} \cdot \frac{\log 2}{\log 5} \cdot \frac{\log 5}{\log 3} \] Notice that \( \log 2 \) and \( \log 5 \) cancels out: \[ = \frac{\log 17}{\log 3} \] ### Step 4: Establish the inequality We need to show that: \[ \frac{\log 17}{\log 3} > 2 \] This can be rewritten as: \[ \log 17 > 2 \log 3 \] Using the properties of logarithms, we can express \( 2 \log 3 \) as \( \log 3^2 \): \[ \log 17 > \log 9 \] ### Step 5: Compare the values Since \( 17 > 9 \), we can conclude that: \[ \log 17 > \log 9 \] Thus, we have proved that: \[ \log_{2} 17 \cdot \log_{\frac{1}{5}} 2 \cdot \log_{3} \frac{1}{5} > 2 \] ### Conclusion The original statement is proven true. ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (Multiple choice questions)|72 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Miscellaneous exercise|3 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

Prove that log_(2)log_(2)log_(sqrt(3))81=1

Prove that (i) log_(2)log_(2)log_(2)16=1

Prove that log_(2) [log_(4) {log_(5) (625)^(4)}]=1

(log_(2)3)(log_(1/3)5)(log_(4)6)<1

Prove that: log_(3)log_(2)log_(sqrt(5))(625)=1

Prove that log(1+2+3)=log1+log2+log3

Prove that log(1+2+3)=log1+log2+log3

Prove that (log_(4)2)(log_(2)3)=(log_(4)5)(log_(5)3)

3log_(2)5+log_(2)10-log_(2)625

If n>1, then prove that(1)/(log_(2)n)+(1)/(log_(3)n)+...+(1)/(log_(53)n)=(1)/(log_(53)n)