Home
Class 12
MATHS
Prove that: 2//5ltlog(10)3lt1//2...

Prove that: `2//5ltlog_(10)3lt1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \frac{2}{5} < \log_{10} 3 < \frac{1}{2} \), we will follow these steps: ### Step 1: Calculate the value of \( \log_{10} 3 \) Using a scientific calculator or logarithm table, we find: \[ \log_{10} 3 \approx 0.4771 \] ### Step 2: Convert \( \frac{2}{5} \) and \( \frac{1}{2} \) to decimal form Now, we will convert \( \frac{2}{5} \) and \( \frac{1}{2} \) into decimal values. \[ \frac{2}{5} = 0.4 \] \[ \frac{1}{2} = 0.5 \] ### Step 3: Compare the values Now we compare the values: 1. Check if \( \frac{2}{5} < \log_{10} 3 \): \[ 0.4 < 0.4771 \quad \text{(True)} \] 2. Check if \( \log_{10} 3 < \frac{1}{2} \): \[ 0.4771 < 0.5 \quad \text{(True)} \] ### Conclusion Since both inequalities are true, we conclude that: \[ \frac{2}{5} < \log_{10} 3 < \frac{1}{2} \] Thus, we have proved the statement. ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (Multiple choice questions)|72 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Miscellaneous exercise|3 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

Prove that 2/5 lt log_(10) 3 lt 1/2 .

Prove that 1/3 lt log_(20) 3 lt 1/2 .

Prove that (2)/(5)

Prove that (1)/(3)<(log)_(10)3<(1)/(2)

Prove that ln 2 lt int_(0)^(1)(dx)/(sqrt(1+x^(4))) lt (pi)/2)

Prove that log_(10) 2" lies between " 1/4 and 1/3 .

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1

Prove that: (2^((1)/(2))x3^((1)/(3))x4^((1)/(4)))/(10^(-(1)/(5))x5^((3)/(5)))-:(3^((4)/(3))x5^(-(7)/(5)))/(4^(-(3)/(3))x6)=10

Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(3))/(1-3x^(2)) , |x| lt 1/(sqrt(3))