Home
Class 12
MATHS
If (x(y+z-x))/(logx)=(y(z+x-y))/(logy)=(...

If `(x(y+z-x))/(logx)=(y(z+x-y))/(logy)=(z(x+y-z))/(logz)` then `x^(y).y^(x)=z^(y).y^(z)=x^(z).z^(x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to prove that if \[ \frac{x(y+z-x)}{\log x} = \frac{y(z+x-y)}{\log y} = \frac{z(x+y-z)}{\log z} \] then \[ x^y y^x = z^y y^z = x^z z^x. \] ### Step 1: Set the common value Let \[ \frac{x(y+z-x)}{\log x} = \frac{y(z+x-y)}{\log y} = \frac{z(x+y-z)}{\log z} = \frac{1}{t} \] for some \( t \). ### Step 2: Express logs in terms of \( t \) From the first equation, we have: \[ \log x = t \cdot x(y + z - x). \] From the second equation: \[ \log y = t \cdot y(z + x - y). \] From the third equation: \[ \log z = t \cdot z(x + y - z). \] ### Step 3: Use the logarithmic properties We will use the properties of logarithms to express \( x^y y^x \), \( z^y y^z \), and \( x^z z^x \). 1. For \( x^y y^x \): \[ \log(x^y y^x) = y \log x + x \log y. \] Substituting the values from Step 2: \[ = y(t x (y + z - x)) + x(t y (z + x - y)). \] ### Step 4: Simplify the expression Combine the terms: \[ = t \left( yx(y + z - x) + xy(z + x - y) \right). \] ### Step 5: Factor out common terms Notice that both terms have \( xy \): \[ = txy \left( (y + z - x) + (z + x - y) \right). \] ### Step 6: Simplify the expression further Combine the terms inside the parentheses: \[ = txy \left( 2z \right). \] Thus, \[ \log(x^y y^x) = 2xyz t. \] ### Step 7: Repeat for \( z^y y^z \) and \( x^z z^x \) Following similar steps for \( z^y y^z \) and \( x^z z^x \): - For \( z^y y^z \): \[ \log(z^y y^z) = y \log z + z \log y = 2xyz t. \] - For \( x^z z^x \): \[ \log(x^z z^x) = z \log x + x \log z = 2xyz t. \] ### Step 8: Conclude the proof Since all three expressions equal \( e^{2xyz t} \), we conclude that: \[ x^y y^x = z^y y^z = x^z z^x. \] Thus, we have proved the required statement.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (Multiple choice questions)|72 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Miscellaneous exercise|3 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If (y+z-x)/(log x)=y(z+x-y)/(log y)=z(x+y-z)/(log z) Prove that x^(y)y^(x)=z^(y)y^(z)=x^(z)z^(x)

(If(y+z-x))/((x(y+z-x))/(log y))=(y(z+x-y))/(log y)(z(x+y-z))/(log z), prove that x^(y)y^(x)=z^(x)y^(z)=x^(z)z^(x)

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If log x log y log z=(y-z)(z-x)(x-y) then a )x^(y)*y^(z)*z^(x)=1 b) x^(2)y^(2)z^(2)=1c)root(z)(x)*root(y)(y)*root(z)(z)1=d) None of these

If a^(x)=(x+y+z)^(y), a^(y)=(x+y+z)^(z), a^(z)=(x+y+z)^(x) , then :

If (y )/(x -z) = (y +x)/(z) = (x)/(y) then x :: y :z = ?

If x + y = 2z then (x)/(x-z) +(z)/(y-z) = ?