Home
Class 12
MATHS
Prove that (log(a)n)/(log(ab)n)=1+log(a)...

Prove that `(log_(a)n)/(log_(ab)n)=1+log_(a)b`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \frac{\log_a n}{\log_{ab} n} = 1 + \log_a b, \] we will start with the left-hand side and manipulate it step by step. ### Step 1: Rewrite the logarithm in terms of natural logarithms Using the change of base formula, we can express the logarithms in terms of natural logarithms (base \(e\)): \[ \log_a n = \frac{\log_e n}{\log_e a} \] and \[ \log_{ab} n = \frac{\log_e n}{\log_e (ab)}. \] ### Step 2: Substitute into the left-hand side Now, substituting these expressions into the left-hand side, we get: \[ \frac{\log_a n}{\log_{ab} n} = \frac{\frac{\log_e n}{\log_e a}}{\frac{\log_e n}{\log_e (ab)}}. \] ### Step 3: Simplify the fraction This simplifies to: \[ \frac{\log_e n}{\log_e a} \cdot \frac{\log_e (ab)}{\log_e n} = \frac{\log_e (ab)}{\log_e a}. \] ### Step 4: Expand \(\log_e (ab)\) Using the property of logarithms that states \(\log_e (xy) = \log_e x + \log_e y\), we can expand \(\log_e (ab)\): \[ \log_e (ab) = \log_e a + \log_e b. \] ### Step 5: Substitute back into the expression Now substituting this back into our expression gives: \[ \frac{\log_e (ab)}{\log_e a} = \frac{\log_e a + \log_e b}{\log_e a}. \] ### Step 6: Split the fraction This can be split into two separate fractions: \[ \frac{\log_e a}{\log_e a} + \frac{\log_e b}{\log_e a} = 1 + \frac{\log_e b}{\log_e a}. \] ### Step 7: Rewrite \(\frac{\log_e b}{\log_e a}\) Using the change of base formula again, we can rewrite \(\frac{\log_e b}{\log_e a}\) as \(\log_a b\): \[ 1 + \log_a b. \] ### Conclusion Thus, we have shown that: \[ \frac{\log_a n}{\log_{ab} n} = 1 + \log_a b. \] This completes the proof. ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (Multiple choice questions)|72 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Miscellaneous exercise|3 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

4.Prove that log_(a)(bc).log_(b)(ca).log_(c)(ab)=2+log_(a)(bc)+log_(b)(ca)+log_(c)(ab)

Prove that log_(ab)(x)=((log_(a)(x))(log_(b)(x)))/(log_(a)(x)+log_(b)(x))

Prove that: (log_(a)(log_(b)a))/(log_(b)(log_(a)b))=-log_(a)b

Prove that: log_(a)x=log_(b)x xx log_(c)b xx...xx log_(n)m xx log_(a)n

( Prove that )/(1+log_(b)a+log_(b)c)+(1)/(1+log_(c)a+log_(c)b)+(1)/(1+log_(a)b+log_(a)c)=1

Prove that log_(n)(n+1)>log_(n+1)(n+2) for any natural number n>1

if quad 0,c>0,b=sqrt(a)c,a!=1,c!=1,ac!=1a and n>0 then the value of (log_(a)n-log_(b)n)/(log_(b)n-log_(c)n) is equal to

If n>1 then prove that (1)/(log_(2)n)+(1)/(log_(3)n)+............+((1)/(log_(53)n)=(1)/(log_(53!)n)

If n>1, then prove that(1)/(log_(2)n)+(1)/(log_(3)n)+...+(1)/(log_(53)n)=(1)/(log_(53)n)