Home
Class 12
MATHS
If a^(2)+b^(2)=7ab, then log.(1)/(3)(a+b...

If `a^(2)+b^(2)=7ab`, then `log.(1)/(3)(a+b)=(1)/(2)[loga+logb]`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the equation \( \log \left( \frac{1}{3} (a+b) \right) = \frac{1}{2} \left( \log a + \log b \right) \) given the condition \( a^2 + b^2 = 7ab \), we can follow these steps: ### Step 1: Rewrite the given condition We start with the equation: \[ a^2 + b^2 = 7ab \] We can rearrange this as: \[ a^2 + b^2 - 7ab = 0 \] ### Step 2: Add \( 2ab \) to both sides To make it easier to factor, we add \( 2ab \) to both sides: \[ a^2 + b^2 + 2ab = 7ab + 2ab \] This simplifies to: \[ (a + b)^2 = 9ab \] ### Step 3: Take the square root Taking the square root of both sides gives us: \[ a + b = 3\sqrt{ab} \] ### Step 4: Substitute into the logarithmic equation Now we substitute \( a + b \) into the logarithmic equation we want to prove: \[ \log \left( \frac{1}{3} (a+b) \right) = \log \left( \frac{1}{3} \cdot 3\sqrt{ab} \right) \] This simplifies to: \[ \log (\sqrt{ab}) = \frac{1}{2} \log (ab) \] ### Step 5: Use properties of logarithms Using the property of logarithms that states \( \log (xy) = \log x + \log y \), we can write: \[ \log (ab) = \log a + \log b \] Thus, we have: \[ \log (\sqrt{ab}) = \frac{1}{2} (\log a + \log b) \] ### Step 6: Final substitution Now we can rewrite our earlier expression: \[ \log \left( \frac{1}{3} (a+b) \right) = \frac{1}{2} (\log a + \log b) \] This completes the proof. ### Conclusion Thus, we have shown that: \[ \log \left( \frac{1}{3} (a+b) \right) = \frac{1}{2} \left( \log a + \log b \right) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (Multiple choice questions)|72 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Miscellaneous exercise|3 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If a^(2)+b^(2)=7ab, prove that log((1)/(3)(a+b))=(1)/(2)(log a+log b)

If a^(2)+b^(2)=23ab , then prove that log(a+b)/5=1/2(loga+logb)

If a^(2) + b^(2) = 7 ab , then log (( a + b)/(3 )) equals

If a^(2)+b^(2)=23ab, then prove that: (log(a+b))/(5)=(1)/(2)(log a+log b)

If a^(2) + b^(2) = 7ab , then the vlaue of log [(1)/(3) (a + b)] is

If a^(2)+b^(2)=7ab prove that ((log(a+b))/(3))'=(log a+log b)/(2)

If a^(2)+b^(2)=23ab, then prove that (log((a+b)))/(5)=(1)/(2)(log a+log b)

If a^(2) + b^(2) = 7 ab," prove that " log((a+b)/3) = 1/2 (log a + log b) .

If a^(2)+b^(2)=7ab then the value of is log((a+b)/(3))-(log a)/(2)-(log b)/(2)