Home
Class 12
MATHS
If x satisfies the inequality log(25)x^(...

If `x` satisfies the inequality `log_(25)x^(2)+(log_(5)x)^(2)lt2`, then `x epsilon`

A

`((1)/(25),5)`

B

`(1,2)`

C

`(4,5)`

D

`(0,1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \log_{25}(x^2) + (\log_{5}(x))^2 < 2 \), we will follow these steps: ### Step 1: Rewrite the logarithm We know that \( 25 = 5^2 \), so we can rewrite \( \log_{25}(x^2) \) using the change of base formula: \[ \log_{25}(x^2) = \frac{\log_{5}(x^2)}{\log_{5}(25)} = \frac{\log_{5}(x^2)}{2} = \frac{2\log_{5}(x)}{2} = \log_{5}(x) \] Thus, we can rewrite the inequality as: \[ \log_{5}(x) + (\log_{5}(x))^2 < 2 \] ### Step 2: Let \( y = \log_{5}(x) \) Substituting \( y \) into the inequality gives us: \[ y + y^2 < 2 \] Rearranging this, we have: \[ y^2 + y - 2 < 0 \] ### Step 3: Factor the quadratic inequality Next, we factor the quadratic expression: \[ y^2 + y - 2 = (y - 1)(y + 2) \] Thus, the inequality becomes: \[ (y - 1)(y + 2) < 0 \] ### Step 4: Determine the intervals To solve the inequality \( (y - 1)(y + 2) < 0 \), we find the critical points where the expression equals zero: - \( y - 1 = 0 \) gives \( y = 1 \) - \( y + 2 = 0 \) gives \( y = -2 \) Now, we test the intervals determined by these critical points: \( (-\infty, -2) \), \( (-2, 1) \), and \( (1, \infty) \). 1. For \( y < -2 \) (e.g., \( y = -3 \)): \[ (-3 - 1)(-3 + 2) = (-4)(-1) = 4 > 0 \] 2. For \( -2 < y < 1 \) (e.g., \( y = 0 \)): \[ (0 - 1)(0 + 2) = (-1)(2) = -2 < 0 \] 3. For \( y > 1 \) (e.g., \( y = 2 \)): \[ (2 - 1)(2 + 2) = (1)(4) = 4 > 0 \] Thus, the solution to the inequality is: \[ -2 < y < 1 \] ### Step 5: Substitute back for \( x \) Now we revert back to \( x \) using \( y = \log_{5}(x) \): \[ -2 < \log_{5}(x) < 1 \] ### Step 6: Convert logarithmic inequalities to exponential form 1. From \( \log_{5}(x) > -2 \): \[ x > 5^{-2} = \frac{1}{25} \] 2. From \( \log_{5}(x) < 1 \): \[ x < 5^1 = 5 \] ### Final Solution Combining these results, we have: \[ \frac{1}{25} < x < 5 \] Thus, the solution set is: \[ x \in \left( \frac{1}{25}, 5 \right) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

Solve the inequality (log_(2)x)^(2)-|(log_(2)x)-2|>=0

Solve the inequality (log_(2)x)^(2)-|(log_(2)x)-2|>=0

Solve the inequality log _(0.5)|1x|log_(x1)2<=2

Solve the inequality: log_(x-2)(2x-3)>log_(x-2)(24-6x)

Solve the inequality: log_(1//2)(x+1) gt log_(2)(2-x)

If x=(4)/(9) then number of distinct integral values of x satisfying the inequality log_(a)(x^(2)-x+2)>log_(a)(-x^(2)+2x+3) ,is

If x satisfies the inequality log_(x+3)(x^(2)-x)<1 then x may belong to the interval

If x, where 0,1,2 are respectively the values of x satisfying the equation ((log_(5)x))^(2)+(log_(5x)((5)/(x))), then

The number of negative integral values of x satisfying the inequality log_((x+(5)/(2)))((x-5)/(2x-3))^(2)lt 0 is :

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (2) (Multiple choice questions)
  1. The solution set of log(2)(3-x)+log(2)(1-x)=3 is

    Text Solution

    |

  2. The number of solutions of log(4)(x-1)=log(2)(x-3) is

    Text Solution

    |

  3. If x satisfies the inequality log(25)x^(2)+(log(5)x)^(2)lt2, then x ep...

    Text Solution

    |

  4. If log(2)x xxlog(2).(x)/(16)+4=0, then x=

    Text Solution

    |

  5. If log(16)x+log(4)x+log(2)x=14, then x=

    Text Solution

    |

  6. All the integral values of x for which 7x-3gt(x+1)^(2)gtx+3 lie in the...

    Text Solution

    |

  7. If log(3)xlog(y)3log(2)y=5, then x=

    Text Solution

    |

  8. The equation log(e)x+log(e)(1+x)=0 can be written as

    Text Solution

    |

  9. If 2log(16)(x^(2)+x)-log(4)(x+1)=2, then x=

    Text Solution

    |

  10. If 2 log (x + 1) - log ((x^2) -1) = log 2. Then x equals to :

    Text Solution

    |

  11. If log(2)(a+b)+log(2)(c+d) ge4, then the minimum value of a+b+c+d is

    Text Solution

    |

  12. If log(x)(3x^(2)+10x)=3 , then x=

    Text Solution

    |

  13. The solution set of the equation log(1//5)(2x+5)+log(5)(16-x^(2))le1 i...

    Text Solution

    |

  14. The number of solutions of the equation 125^(x)+45^(x)=2.27^(x) is

    Text Solution

    |

  15. The number of solutions of (log5+log(x^(2)+1))/(log(x-2))=2 is

    Text Solution

    |

  16. The value of ' x ' satisfying the equation, 4^((log)9 3)+9^((log)2 4)=...

    Text Solution

    |

  17. If 5^(1+log(4)x)+5^(-log4x-1)=(26)/(5), then x=

    Text Solution

    |

  18. The solution set of the equation x^(log(x)(1-x)^(2))=9 is

    Text Solution

    |

  19. If 7^(log(7)(x^(2)-4x+5))=(x-1), then x may have values

    Text Solution

    |

  20. Sum of the roots of the equation 9^(log(3)(log(2)x))=log(2)x-(log(2)x)...

    Text Solution

    |