Home
Class 12
MATHS
If log(16)x+log(4)x+log(2)x=14, then x=...

If `log_(16)x+log_(4)x+log_(2)x=14`, then x=

A

`16`

B

`32`

C

`64`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{16} x + \log_{4} x + \log_{2} x = 14 \), we can follow these steps: ### Step 1: Change the base of the logarithms We can express all logarithms in terms of base 2. Using the change of base formula: \[ \log_{a} b = \frac{\log_{c} b}{\log_{c} a} \] We can rewrite: \[ \log_{16} x = \frac{\log_{2} x}{\log_{2} 16} = \frac{\log_{2} x}{4} \quad (\text{since } 16 = 2^4) \] \[ \log_{4} x = \frac{\log_{2} x}{\log_{2} 4} = \frac{\log_{2} x}{2} \quad (\text{since } 4 = 2^2) \] \[ \log_{2} x = \log_{2} x \] ### Step 2: Substitute back into the equation Substituting these into the original equation gives: \[ \frac{\log_{2} x}{4} + \frac{\log_{2} x}{2} + \log_{2} x = 14 \] ### Step 3: Combine the terms To combine the terms, we need a common denominator. The common denominator for 4, 2, and 1 is 4. Thus, we rewrite the equation as: \[ \frac{\log_{2} x}{4} + \frac{2 \log_{2} x}{4} + \frac{4 \log_{2} x}{4} = 14 \] This simplifies to: \[ \frac{1 + 2 + 4}{4} \log_{2} x = 14 \] \[ \frac{7}{4} \log_{2} x = 14 \] ### Step 4: Solve for \( \log_{2} x \) Now, we can solve for \( \log_{2} x \): \[ \log_{2} x = 14 \cdot \frac{4}{7} = 8 \] ### Step 5: Convert from logarithmic to exponential form To find \( x \), we convert from logarithmic form: \[ x = 2^{8} = 256 \] ### Final Answer Thus, the value of \( x \) is \( 256 \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If log_(4)x+log_(16)x=6 then x=

If log_(16) x + log_(x) x + log_(2) x = 14 , then x =

If log_(x)(log_(2)x)*log_(2)x=3, then x is a ( an )

if log_(2)x+log_(4)x+log_(16)x=(21)/(4) find x

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

If x = log_(3) log_(2) log_(2) 256, "then" 2^(log_(4)2^(2^(x)) = _______

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (2) (Multiple choice questions)
  1. If x satisfies the inequality log(25)x^(2)+(log(5)x)^(2)lt2, then x ep...

    Text Solution

    |

  2. If log(2)x xxlog(2).(x)/(16)+4=0, then x=

    Text Solution

    |

  3. If log(16)x+log(4)x+log(2)x=14, then x=

    Text Solution

    |

  4. All the integral values of x for which 7x-3gt(x+1)^(2)gtx+3 lie in the...

    Text Solution

    |

  5. If log(3)xlog(y)3log(2)y=5, then x=

    Text Solution

    |

  6. The equation log(e)x+log(e)(1+x)=0 can be written as

    Text Solution

    |

  7. If 2log(16)(x^(2)+x)-log(4)(x+1)=2, then x=

    Text Solution

    |

  8. If 2 log (x + 1) - log ((x^2) -1) = log 2. Then x equals to :

    Text Solution

    |

  9. If log(2)(a+b)+log(2)(c+d) ge4, then the minimum value of a+b+c+d is

    Text Solution

    |

  10. If log(x)(3x^(2)+10x)=3 , then x=

    Text Solution

    |

  11. The solution set of the equation log(1//5)(2x+5)+log(5)(16-x^(2))le1 i...

    Text Solution

    |

  12. The number of solutions of the equation 125^(x)+45^(x)=2.27^(x) is

    Text Solution

    |

  13. The number of solutions of (log5+log(x^(2)+1))/(log(x-2))=2 is

    Text Solution

    |

  14. The value of ' x ' satisfying the equation, 4^((log)9 3)+9^((log)2 4)=...

    Text Solution

    |

  15. If 5^(1+log(4)x)+5^(-log4x-1)=(26)/(5), then x=

    Text Solution

    |

  16. The solution set of the equation x^(log(x)(1-x)^(2))=9 is

    Text Solution

    |

  17. If 7^(log(7)(x^(2)-4x+5))=(x-1), then x may have values

    Text Solution

    |

  18. Sum of the roots of the equation 9^(log(3)(log(2)x))=log(2)x-(log(2)x)...

    Text Solution

    |

  19. The equation 5^(1+log(5)cosx)=2*5 has

    Text Solution

    |

  20. If x^(log(3)x^(2)+(log(3)x)^(2)-10)=1//x^(2), then x=

    Text Solution

    |