Home
Class 12
MATHS
All the integral values of x for which 7...

All the integral values of `x` for which `7x-3gt(x+1)^(2)gtx+3` lie in the interval

A

`[1,2]`

B

`[2,3]`

C

`[3,4]`

D

`(1,4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( 7x - 3 > (x + 1)^2 > x + 3 \) and find all integral values of \( x \), we can break it down into two parts: 1. Solve \( 7x - 3 > (x + 1)^2 \) 2. Solve \( (x + 1)^2 > x + 3 \) ### Step 1: Solve \( 7x - 3 > (x + 1)^2 \) 1. **Expand the right side:** \[ 7x - 3 > x^2 + 2x + 1 \] 2. **Rearrange the inequality:** \[ 7x - 3 - 2x - 1 > x^2 \] \[ 5x - 4 > x^2 \] 3. **Rearranging gives:** \[ x^2 - 5x + 4 < 0 \] 4. **Factor the quadratic:** \[ (x - 4)(x - 1) < 0 \] 5. **Find the critical points:** The critical points are \( x = 1 \) and \( x = 4 \). 6. **Test intervals on the number line:** - For \( x < 1 \): Choose \( x = 0 \) → \( (0 - 4)(0 - 1) = 4 > 0 \) - For \( 1 < x < 4 \): Choose \( x = 2 \) → \( (2 - 4)(2 - 1) = -2 < 0 \) - For \( x > 4 \): Choose \( x = 5 \) → \( (5 - 4)(5 - 1) = 4 > 0 \) 7. **Solution for this part:** \[ 1 < x < 4 \] ### Step 2: Solve \( (x + 1)^2 > x + 3 \) 1. **Expand the left side:** \[ x^2 + 2x + 1 > x + 3 \] 2. **Rearranging gives:** \[ x^2 + 2x + 1 - x - 3 > 0 \] \[ x^2 + x - 2 > 0 \] 3. **Factor the quadratic:** \[ (x + 2)(x - 1) > 0 \] 4. **Find the critical points:** The critical points are \( x = -2 \) and \( x = 1 \). 5. **Test intervals on the number line:** - For \( x < -2 \): Choose \( x = -3 \) → \( (-3 + 2)(-3 - 1) = 4 > 0 \) - For \( -2 < x < 1 \): Choose \( x = 0 \) → \( (0 + 2)(0 - 1) = -2 < 0 \) - For \( x > 1 \): Choose \( x = 2 \) → \( (2 + 2)(2 - 1) = 4 > 0 \) 6. **Solution for this part:** \[ x < -2 \quad \text{or} \quad x > 1 \] ### Step 3: Find the intersection of the two solutions 1. **From the first inequality:** \( 1 < x < 4 \) 2. **From the second inequality:** \( x < -2 \quad \text{or} \quad x > 1 \) 3. **Intersection of the two solutions:** The only overlapping part is \( 1 < x < 4 \) and \( x > 1 \), which gives: \[ 1 < x < 4 \] ### Step 4: Determine integral values of \( x \) The integral values of \( x \) in the interval \( (1, 4) \) are: \[ x = 2, 3 \] ### Final Answer: The integral values of \( x \) are \( 2 \) and \( 3 \).
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

Integral value of k for which x^2-2(3k-1)x+8k^2-7 gt 0

The values of x satisfying x^("log"_(5)) gt5 lie in the interval

If x is real then the values of (x^(2) + 34 x - 71)/(x^(2) + 2x - 7) does not lie in the interval

The set of values of k for which roots of the equation x^(2) - 3x + k = 0 lie in the interval (0, 2), is

The number of integral values of x satisfying 5x-1<(x+1)^(2)<7x-3 is

Find all possible integral values of x for which satisfy, x^2+3x-28lt0

Given x gt 0, then value of f(x)=-3cossqrt(3+x+x^(2)) lie in the interval ….. .

Least positive integral value of 'a' for which log_((x+(1)/(x)))(a^(2)-3a+3) gt 0, (x gt 0) :

The value of f(x)=3sin sqrt(((pi^(2))/(16)-x^(2))) lie in the interval

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (2) (Multiple choice questions)
  1. If log(2)x xxlog(2).(x)/(16)+4=0, then x=

    Text Solution

    |

  2. If log(16)x+log(4)x+log(2)x=14, then x=

    Text Solution

    |

  3. All the integral values of x for which 7x-3gt(x+1)^(2)gtx+3 lie in the...

    Text Solution

    |

  4. If log(3)xlog(y)3log(2)y=5, then x=

    Text Solution

    |

  5. The equation log(e)x+log(e)(1+x)=0 can be written as

    Text Solution

    |

  6. If 2log(16)(x^(2)+x)-log(4)(x+1)=2, then x=

    Text Solution

    |

  7. If 2 log (x + 1) - log ((x^2) -1) = log 2. Then x equals to :

    Text Solution

    |

  8. If log(2)(a+b)+log(2)(c+d) ge4, then the minimum value of a+b+c+d is

    Text Solution

    |

  9. If log(x)(3x^(2)+10x)=3 , then x=

    Text Solution

    |

  10. The solution set of the equation log(1//5)(2x+5)+log(5)(16-x^(2))le1 i...

    Text Solution

    |

  11. The number of solutions of the equation 125^(x)+45^(x)=2.27^(x) is

    Text Solution

    |

  12. The number of solutions of (log5+log(x^(2)+1))/(log(x-2))=2 is

    Text Solution

    |

  13. The value of ' x ' satisfying the equation, 4^((log)9 3)+9^((log)2 4)=...

    Text Solution

    |

  14. If 5^(1+log(4)x)+5^(-log4x-1)=(26)/(5), then x=

    Text Solution

    |

  15. The solution set of the equation x^(log(x)(1-x)^(2))=9 is

    Text Solution

    |

  16. If 7^(log(7)(x^(2)-4x+5))=(x-1), then x may have values

    Text Solution

    |

  17. Sum of the roots of the equation 9^(log(3)(log(2)x))=log(2)x-(log(2)x)...

    Text Solution

    |

  18. The equation 5^(1+log(5)cosx)=2*5 has

    Text Solution

    |

  19. If x^(log(3)x^(2)+(log(3)x)^(2)-10)=1//x^(2), then x=

    Text Solution

    |

  20. If x^([(log(2)x)^(2)-6log(2)x+11])=64, then x=

    Text Solution

    |