Home
Class 12
MATHS
If 2log(16)(x^(2)+x)-log(4)(x+1)=2, then...

If `2log_(16)(x^(2)+x)-log_(4)(x+1)=2`, then x=

A

`-1`

B

`16`

C

`2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\log_{16}(x^2 + x) - \log_{4}(x + 1) = 2 \), we will follow these steps: ### Step 1: Change the base of the logarithms We can express \( \log_{16} \) in terms of \( \log_{4} \) since \( 16 = 4^2 \). Using the change of base formula: \[ \log_{16}(a) = \frac{\log_{4}(a)}{\log_{4}(16)} = \frac{\log_{4}(a)}{2} \] Thus, we can rewrite \( 2\log_{16}(x^2 + x) \) as: \[ 2\log_{16}(x^2 + x) = 2 \cdot \frac{\log_{4}(x^2 + x)}{2} = \log_{4}(x^2 + x) \] ### Step 2: Rewrite the equation Substituting back into the original equation gives us: \[ \log_{4}(x^2 + x) - \log_{4}(x + 1) = 2 \] ### Step 3: Use the property of logarithms Using the property \( \log_{a}(m) - \log_{a}(n) = \log_{a}\left(\frac{m}{n}\right) \), we can combine the logarithms: \[ \log_{4}\left(\frac{x^2 + x}{x + 1}\right) = 2 \] ### Step 4: Exponentiate both sides To eliminate the logarithm, we exponentiate both sides: \[ \frac{x^2 + x}{x + 1} = 4^2 \] This simplifies to: \[ \frac{x^2 + x}{x + 1} = 16 \] ### Step 5: Cross-multiply Cross-multiplying gives: \[ x^2 + x = 16(x + 1) \] Expanding the right side: \[ x^2 + x = 16x + 16 \] ### Step 6: Rearrange the equation Rearranging the equation to one side gives: \[ x^2 + x - 16x - 16 = 0 \] This simplifies to: \[ x^2 - 15x - 16 = 0 \] ### Step 7: Factor the quadratic equation Now we need to factor the quadratic: \[ (x - 16)(x + 1) = 0 \] ### Step 8: Solve for x Setting each factor to zero gives us: \[ x - 16 = 0 \quad \Rightarrow \quad x = 16 \] \[ x + 1 = 0 \quad \Rightarrow \quad x = -1 \] ### Step 9: Check for valid solutions Since logarithms are defined for positive arguments, we check: - For \( x = 16 \): \( x^2 + x = 256 + 16 = 272 \) (valid) - For \( x = -1 \): \( x^2 + x = 1 - 1 = 0 \) (invalid) Thus, the only valid solution is: \[ \boxed{16} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

log_(x)(9x^(2))*log_(3)^(2)(x)=4

log(x+1)^(x^(2))=4log(x+1)

If log(x^(2) - 16) le log_(e) (4 x -11) , then

If log_(4)(x - 1) = log_(2)(x - 3) , then x may be

If log_(x+1)(2x-1)+log_(2x-1)(x+1)=2, find x.

2log_(4)(4-x)=4-log_(2)(-2-x)

log_(sqrt(2))sqrt(x)+log_(2)x log_(4)(x^(2))+log_(8)(x^(3))+log_(16)(x^(4))=40 then x is equal to

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (2) (Multiple choice questions)
  1. If log(3)xlog(y)3log(2)y=5, then x=

    Text Solution

    |

  2. The equation log(e)x+log(e)(1+x)=0 can be written as

    Text Solution

    |

  3. If 2log(16)(x^(2)+x)-log(4)(x+1)=2, then x=

    Text Solution

    |

  4. If 2 log (x + 1) - log ((x^2) -1) = log 2. Then x equals to :

    Text Solution

    |

  5. If log(2)(a+b)+log(2)(c+d) ge4, then the minimum value of a+b+c+d is

    Text Solution

    |

  6. If log(x)(3x^(2)+10x)=3 , then x=

    Text Solution

    |

  7. The solution set of the equation log(1//5)(2x+5)+log(5)(16-x^(2))le1 i...

    Text Solution

    |

  8. The number of solutions of the equation 125^(x)+45^(x)=2.27^(x) is

    Text Solution

    |

  9. The number of solutions of (log5+log(x^(2)+1))/(log(x-2))=2 is

    Text Solution

    |

  10. The value of ' x ' satisfying the equation, 4^((log)9 3)+9^((log)2 4)=...

    Text Solution

    |

  11. If 5^(1+log(4)x)+5^(-log4x-1)=(26)/(5), then x=

    Text Solution

    |

  12. The solution set of the equation x^(log(x)(1-x)^(2))=9 is

    Text Solution

    |

  13. If 7^(log(7)(x^(2)-4x+5))=(x-1), then x may have values

    Text Solution

    |

  14. Sum of the roots of the equation 9^(log(3)(log(2)x))=log(2)x-(log(2)x)...

    Text Solution

    |

  15. The equation 5^(1+log(5)cosx)=2*5 has

    Text Solution

    |

  16. If x^(log(3)x^(2)+(log(3)x)^(2)-10)=1//x^(2), then x=

    Text Solution

    |

  17. If x^([(log(2)x)^(2)-6log(2)x+11])=64, then x=

    Text Solution

    |

  18. If log(3)2,log(3)(2^(x)-5) and log(3)(2^(x)-7//2) are in arithmetic pr...

    Text Solution

    |

  19. The equation x^((3//4)(log(2)x)^(2)+log(2)x-5//4)=sqrt(2) has

    Text Solution

    |

  20. The value of x satisfying the equation |x-1|^(log(3)x^(2)-2log(x)9)=(x...

    Text Solution

    |