Home
Class 12
MATHS
If 5^(1+log(4)x)+5^(-log4x-1)=(26)/(5), ...

If `5^(1+log_(4)x)+5^(-log_4x-1)=(26)/(5)`, then x=

A

`4^(0)`

B

`4^(1)`

C

`4^(-1)`

D

`4^(-2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 5^{1 + \log_4 x} + 5^{-\log_4 x - 1} = \frac{26}{5} \), we can follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ 5^{1 + \log_4 x} + 5^{-\log_4 x - 1} = \frac{26}{5} \] We can rewrite \( 5^{1 + \log_4 x} \) as \( 5 \cdot 5^{\log_4 x} \) and \( 5^{-\log_4 x - 1} \) as \( \frac{1}{5} \cdot 5^{-\log_4 x} \). ### Step 2: Substitute \( t = 5^{\log_4 x} \) Let \( t = 5^{\log_4 x} \). Then, we can rewrite the equation as: \[ 5t + \frac{1}{5t} = \frac{26}{5} \] ### Step 3: Multiply through by \( 5t \) To eliminate the fraction, multiply through by \( 5t \): \[ 25t^2 + 1 = 26t \] ### Step 4: Rearrange into standard quadratic form Rearranging gives us: \[ 25t^2 - 26t + 1 = 0 \] ### Step 5: Apply the quadratic formula Using the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): - Here, \( a = 25 \), \( b = -26 \), and \( c = 1 \). \[ t = \frac{26 \pm \sqrt{(-26)^2 - 4 \cdot 25 \cdot 1}}{2 \cdot 25} \] Calculating the discriminant: \[ t = \frac{26 \pm \sqrt{676 - 100}}{50} = \frac{26 \pm \sqrt{576}}{50} \] \[ t = \frac{26 \pm 24}{50} \] ### Step 6: Find the values of \( t \) Calculating the two possible values: 1. \( t = \frac{50}{50} = 1 \) 2. \( t = \frac{2}{50} = \frac{1}{25} \) ### Step 7: Relate back to \( x \) Recall that \( t = 5^{\log_4 x} \): 1. For \( t = 1 \): \[ 5^{\log_4 x} = 1 \implies \log_4 x = 0 \implies x = 4^0 = 1 \] 2. For \( t = \frac{1}{25} \): \[ 5^{\log_4 x} = \frac{1}{25} \implies \log_4 x = -2 \implies x = 4^{-2} = \frac{1}{16} \] ### Final Answer Thus, the values of \( x \) are: \[ x = 1 \quad \text{and} \quad x = \frac{1}{16} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If log_(x)(4x^(log_(5)(x))+5)=2log_(5)x, then x equals to

If log_(10)5+log_(10)(5x+1)=log_(10)(x+5)+1, then x is equal to

If log_(5)[log_(3)(log_(2)x)]=1 , then x is:

If log_(x)((1)/(root(5)(2)))=(-1)/(5), then x=

If log_(0.5)log_(5)(x^(2)-4)>log_(0.5)1, then' x' lies in the interval

If y=5^(2{log_(5)(x+1)-log_(5)(3x+1)}) then (dy)/(dx) at x=0 is

If log_(1//8)(log_(4)(x^(2)-5))gt0 , then ______.

If log_(x){log_(4)(log_(x)(5x^(2)+4x^(3)))}=0, then

Let P=(5)/((1)/(log_(2)x)+(1)/(log_(3)x)+(1)/(log_(4)x)+(1)/(log_(5)x))and (120)^(P)=32 , then the value of x be :

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (2) (Multiple choice questions)
  1. The number of solutions of (log5+log(x^(2)+1))/(log(x-2))=2 is

    Text Solution

    |

  2. The value of ' x ' satisfying the equation, 4^((log)9 3)+9^((log)2 4)=...

    Text Solution

    |

  3. If 5^(1+log(4)x)+5^(-log4x-1)=(26)/(5), then x=

    Text Solution

    |

  4. The solution set of the equation x^(log(x)(1-x)^(2))=9 is

    Text Solution

    |

  5. If 7^(log(7)(x^(2)-4x+5))=(x-1), then x may have values

    Text Solution

    |

  6. Sum of the roots of the equation 9^(log(3)(log(2)x))=log(2)x-(log(2)x)...

    Text Solution

    |

  7. The equation 5^(1+log(5)cosx)=2*5 has

    Text Solution

    |

  8. If x^(log(3)x^(2)+(log(3)x)^(2)-10)=1//x^(2), then x=

    Text Solution

    |

  9. If x^([(log(2)x)^(2)-6log(2)x+11])=64, then x=

    Text Solution

    |

  10. If log(3)2,log(3)(2^(x)-5) and log(3)(2^(x)-7//2) are in arithmetic pr...

    Text Solution

    |

  11. The equation x^((3//4)(log(2)x)^(2)+log(2)x-5//4)=sqrt(2) has

    Text Solution

    |

  12. The value of x satisfying the equation |x-1|^(log(3)x^(2)-2log(x)9)=(x...

    Text Solution

    |

  13. (6)/(5)a^(log(a)xlog(10)alog(a)5)-3^(log(10)(x//10))=9^(log(100)x+log(...

    Text Solution

    |

  14. The equation x^([(log(3)x)^(2)-(9//2)log(3)x+5])=3sqrt(3) has

    Text Solution

    |

  15. The number of solutions the equation |x+1|^(log(x+1)(3+2x-x^(2)))=(x-3...

    Text Solution

    |

  16. The solution of the equation 5^(log(a)x)+5x^(log(a)5)=3, (agt0) is

    Text Solution

    |

  17. log(10)x+log(10)x^(1//2)+log(10)x^(1//4)+....=y and (1+3+5+...(2y-1))/...

    Text Solution

    |

  18. log((2x+3))(6x^(2)+23x+21) =4-log((3x+7))(4x^(2)+12x+9), then x=

    Text Solution

    |

  19. The number of solutions of the equation log(x-3)(x^(3)-3x^(2)-4x+8)=3 ...

    Text Solution

    |

  20. Let [x] denote the greatest integer function. The number of solutions ...

    Text Solution

    |