Home
Class 12
MATHS
If x^([(log(2)x)^(2)-6log(2)x+11])=64, t...

If `x^([(log_(2)x)^(2)-6log_(2)x+11])=64`, then x=

A

`2`

B

`4`

C

`8`

D

`16`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^{(\log_2 x)^2 - 6 \log_2 x + 11} = 64 \), we can follow these steps: ### Step 1: Rewrite the equation We know that \( 64 \) can be expressed as \( 2^6 \). Therefore, we can rewrite the equation as: \[ x^{(\log_2 x)^2 - 6 \log_2 x + 11} = 2^6 \] ### Step 2: Take logarithm on both sides Taking logarithm base 2 on both sides, we have: \[ \log_2\left(x^{(\log_2 x)^2 - 6 \log_2 x + 11}\right) = \log_2(2^6) \] Using the property of logarithms, this simplifies to: \[ (\log_2 x)^2 - 6 \log_2 x + 11 = 6 \] ### Step 3: Rearrange the equation Now, we can rearrange the equation: \[ (\log_2 x)^2 - 6 \log_2 x + 11 - 6 = 0 \] This simplifies to: \[ (\log_2 x)^2 - 6 \log_2 x + 5 = 0 \] ### Step 4: Let \( y = \log_2 x \) Let \( y = \log_2 x \). The equation becomes: \[ y^2 - 6y + 5 = 0 \] ### Step 5: Factor the quadratic equation We can factor this quadratic equation: \[ (y - 1)(y - 5) = 0 \] Thus, we have two solutions: \[ y - 1 = 0 \quad \text{or} \quad y - 5 = 0 \] This gives us: \[ y = 1 \quad \text{or} \quad y = 5 \] ### Step 6: Solve for \( x \) Now, substituting back \( y = \log_2 x \): 1. If \( y = 1 \): \[ \log_2 x = 1 \implies x = 2^1 = 2 \] 2. If \( y = 5 \): \[ \log_2 x = 5 \implies x = 2^5 = 32 \] ### Final Answer Thus, the values of \( x \) are: \[ x = 2 \quad \text{or} \quad x = 32 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If (2)^(log_(2)x^(2))-(3)^(log_(3)(x))-6=0 ,then sum of all possible values of x is

(a^(log_(b)x))^(2)-5x^(log_(b)a)+6=0

Knowledge Check

  • If log(x^(2) - 16) le log_(e) (4 x -11) , then

    A
    `4 lt x le 5 `
    B
    `x lt - 4 or x gt 4 `
    C
    `-1 le x le 5 `
    D
    `x lt -1 or x gt 5 `
  • If "log"_(6) (x+3)-"log"_(6)x = 2 , then x =

    A
    `(1)/(35)`
    B
    `(3)/(35)`
    C
    `(2)/(35)`
    D
    `-(3)/(35)`
  • Let u=(log_(2)x)^(2)-6log_(2)x+12 where x is a real number.. Then the equation x^(u)=256 , has

    A
    no solution for x
    B
    exactly one solution for x
    C
    exactly two distinct solutions for x
    D
    exactly three distinct solutions for x
  • Similar Questions

    Explore conceptually related problems

    Solve : log_(x^(2)16+log_(2x)64=3 .

    If log_(x)(log_(2)x)*log_(2)x=3, then x is a ( an )

    log_(x+1)(x^(2)+x-6)^(2)=4

    If log_(x)(2+x)<=log_(x)(6-x) then x can be

    The domain of definition of the function f(x)=log_(2)[-(log_(2)x)^(2)+5log_(2)x-6] , is