Home
Class 12
MATHS
If log(3)2,log(3)(2^(x)-5) and log(3)(2^...

If `log_(3)2,log_(3)(2^(x)-5)` and `log_(3)(2^(x)-7//2)` are in arithmetic progression, then x=

A

`2`

B

`3`

C

`4`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that \( \log_3 2 \), \( \log_3 (2^x - 5) \), and \( \log_3 \left( \frac{2^x - 7}{2} \right) \) are in arithmetic progression (AP). ### Step-by-Step Solution: 1. **Understanding Arithmetic Progression**: For three numbers \( a \), \( b \), and \( c \) to be in AP, the condition is: \[ 2b = a + c \] Here, let: - \( a = \log_3 2 \) - \( b = \log_3 (2^x - 5) \) - \( c = \log_3 \left( \frac{2^x - 7}{2} \right) \) 2. **Setting Up the Equation**: Using the AP condition: \[ 2 \log_3 (2^x - 5) = \log_3 2 + \log_3 \left( \frac{2^x - 7}{2} \right) \] 3. **Using Logarithmic Properties**: We can combine the logs on the right side: \[ \log_3 2 + \log_3 \left( \frac{2^x - 7}{2} \right) = \log_3 \left( 2 \cdot \frac{2^x - 7}{2} \right) = \log_3 (2^x - 7) \] Thus, our equation becomes: \[ 2 \log_3 (2^x - 5) = \log_3 (2^x - 7) \] 4. **Exponentiating Both Sides**: To eliminate the logarithm, we exponentiate both sides: \[ (2^x - 5)^2 = 2^x - 7 \] 5. **Expanding and Rearranging**: Expanding the left side: \[ 4^x - 10 \cdot 2^x + 25 = 2^x - 7 \] Rearranging gives: \[ 4^x - 11 \cdot 2^x + 32 = 0 \] 6. **Substituting \( y = 2^x \)**: Let \( y = 2^x \). Then we have: \[ y^2 - 11y + 32 = 0 \] 7. **Factoring the Quadratic**: We can factor this quadratic: \[ (y - 8)(y - 4) = 0 \] Thus, \( y = 8 \) or \( y = 4 \). 8. **Finding \( x \)**: - If \( y = 8 \), then \( 2^x = 8 \) implies \( x = 3 \). - If \( y = 4 \), then \( 2^x = 4 \) implies \( x = 2 \). 9. **Checking Validity**: We need to check if both values satisfy the original logarithmic conditions: - For \( x = 3 \): - \( 2^3 - 5 = 3 \) (valid) - \( 2^3 - 7 = 1 \) (valid) - For \( x = 2 \): - \( 2^2 - 5 = -1 \) (invalid, as log of a negative number is not defined) Thus, the only valid solution is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in arithmetic progression,determine the value of x.

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in arithmetic progression,determine the value of x.(1991,4M)

If log_(3)2,log_(3)(2^(x)-5),log_(3)(2^(x)-7/2) are in arithmetic progression, then the value of x is equal to

If the reciprocals of 2, log_((3^(x)-4))4 and log_(3^(x)+(7)/(2))4 are in arithmetic progression, then x is equal to

If log 3,log(3^(x)-2) and backslash log(3^(x)+4) are in arithmetic progression,the x is equal to a.(8)/(3) b.log3^(8) c.8d. log 2^(3)

If log_(3)2,log_(3)(2^(x)-5) and log_(3)(2^(x)-(7)/(2)) are in A.P, determine the value of x.

If log_(3)(2),log_(3)(2^(x)-5),log_(3)(2^(x)-(7)/(2)) are in A.P.Determine the value of x.

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (2) (Multiple choice questions)
  1. If x^(log(3)x^(2)+(log(3)x)^(2)-10)=1//x^(2), then x=

    Text Solution

    |

  2. If x^([(log(2)x)^(2)-6log(2)x+11])=64, then x=

    Text Solution

    |

  3. If log(3)2,log(3)(2^(x)-5) and log(3)(2^(x)-7//2) are in arithmetic pr...

    Text Solution

    |

  4. The equation x^((3//4)(log(2)x)^(2)+log(2)x-5//4)=sqrt(2) has

    Text Solution

    |

  5. The value of x satisfying the equation |x-1|^(log(3)x^(2)-2log(x)9)=(x...

    Text Solution

    |

  6. (6)/(5)a^(log(a)xlog(10)alog(a)5)-3^(log(10)(x//10))=9^(log(100)x+log(...

    Text Solution

    |

  7. The equation x^([(log(3)x)^(2)-(9//2)log(3)x+5])=3sqrt(3) has

    Text Solution

    |

  8. The number of solutions the equation |x+1|^(log(x+1)(3+2x-x^(2)))=(x-3...

    Text Solution

    |

  9. The solution of the equation 5^(log(a)x)+5x^(log(a)5)=3, (agt0) is

    Text Solution

    |

  10. log(10)x+log(10)x^(1//2)+log(10)x^(1//4)+....=y and (1+3+5+...(2y-1))/...

    Text Solution

    |

  11. log((2x+3))(6x^(2)+23x+21) =4-log((3x+7))(4x^(2)+12x+9), then x=

    Text Solution

    |

  12. The number of solutions of the equation log(x-3)(x^(3)-3x^(2)-4x+8)=3 ...

    Text Solution

    |

  13. Let [x] denote the greatest integer function. The number of solutions ...

    Text Solution

    |

  14. The roots of the equation log(2)(x^(2)-4x+5)=(x-2) are

    Text Solution

    |

  15. If xlog(10)(10//3)+log(10)3=log(10)(2+3^(x))+x, then x=

    Text Solution

    |

  16. If log(y)x+log(x)y=2,x^(2)+y=12, then the values of x,y are

    Text Solution

    |

  17. If log(2)x+log(x)2=(10)/(3)=log(2)y+log(y)2 and xney then x+y =

    Text Solution

    |

  18. If 2^(x)-2^(x-1)=4, then x^(x) is equal to

    Text Solution

    |

  19. If log(2)xy=5,log(1//2)(x//y)=1, then the values of x,y are

    Text Solution

    |

  20. If (log)(10)[1/(2^x+x-1)]=x[(log)(10)5-1] , then x= 4 (b) 3 (c) 2 ...

    Text Solution

    |