Home
Class 12
MATHS
(6)/(5)a^(log(a)xlog(10)alog(a)5)-3^(log...

`(6)/(5)a^(log_(a)xlog_(10)alog_(a)5)-3^(log_(10)(x//10))=9^(log_(100)x+log_(4)2)`, then x=

A

`10^(0)`

B

`10^(1)`

C

`10^(2)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{6}{5} a^{\log_a x \log_{10} a \log_a 5} - 3^{\log_{10} \left(\frac{x}{10}\right)} = 9^{\log_{100} x + \log_4 2} \] we will break it down step by step. ### Step 1: Simplifying the Left-Hand Side 1. **Convert the logarithm expressions**: - We know that \(\log_a x = \frac{\log_{10} x}{\log_{10} a}\). - Therefore, we can rewrite \(a^{\log_a x}\) as \(x\). So, we have: \[ \frac{6}{5} a^{\left(\frac{\log_{10} x}{\log_{10} a}\right) \log_{10} a \log_a 5} = \frac{6}{5} a^{\log_{10} x \cdot \frac{\log_{10} 5}{\log_{10} a}} = \frac{6}{5} x^{\log_a 5} \] 2. **Simplifying \(3^{\log_{10} \left(\frac{x}{10}\right)}\)**: - This can be rewritten as \(3^{\log_{10} x - 1} = \frac{3^{\log_{10} x}}{3}\). So, the left-hand side becomes: \[ \frac{6}{5} x^{\log_a 5} - \frac{3^{\log_{10} x}}{3} \] ### Step 2: Simplifying the Right-Hand Side 1. **Convert \(9^{\log_{100} x + \log_4 2}\)**: - We know that \(9 = 3^2\), so we can rewrite it as: \[ (3^2)^{\log_{100} x + \log_4 2} = 3^{2(\log_{100} x + \log_4 2)} \] 2. **Simplifying \(\log_{100} x\)**: - \(\log_{100} x = \frac{\log_{10} x}{\log_{10} 100} = \frac{\log_{10} x}{2}\). - \(\log_4 2 = \frac{1}{2}\). So, we have: \[ 3^{2\left(\frac{\log_{10} x}{2} + \frac{1}{2}\right)} = 3^{\log_{10} x + 1} = 3^{\log_{10} (10x)} = 10x \] ### Step 3: Equating Both Sides Now we equate the left-hand side and the right-hand side: \[ \frac{6}{5} x^{\log_a 5} - \frac{3^{\log_{10} x}}{3} = 10x \] ### Step 4: Solving for \(x\) 1. **Rearranging the equation**: - Move all terms to one side: \[ \frac{6}{5} x^{\log_a 5} - 10x - \frac{3^{\log_{10} x}}{3} = 0 \] 2. **Substituting values**: - This equation may require numerical methods or specific values for \(a\) to solve for \(x\). ### Final Solution The solution for \(x\) will depend on the values of \(a\) and may require numerical approximation methods to find the exact value.
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

Value of x, satisfying (6)/(5)a^(log_(a)(x))*(log_(10)(a)*log_(a)(5))-3^(log_(10)((x)/(10)))=9^(log_(100)(x)+log_(4)(2)) is :

log_(10)3+log_(10)2-2log_(10)5

If (6)/(5)a^(A)-3^(B)=9^(C) where A=log_(a)x*log_(10)a log_(a)5,B=log_(10)((x)/(10)) and C=log_(100)x+log_(4)2. Find x

5^(log_(10)x)=50-x^(log_(10)5)

x^((log_(10)x+5)/(3))=10^(5+log_(10)x)

if x+log_(10)(1+2^(x))=x log_(10)5+log_(10)6 then x

Solve 25^(log_(10)x)=5+4x^(log_(10)5)

(log_(10)100x)^(2)+(log_(10)10x)^(2)+log_(10)x<=14

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (2) (Multiple choice questions)
  1. The equation x^((3//4)(log(2)x)^(2)+log(2)x-5//4)=sqrt(2) has

    Text Solution

    |

  2. The value of x satisfying the equation |x-1|^(log(3)x^(2)-2log(x)9)=(x...

    Text Solution

    |

  3. (6)/(5)a^(log(a)xlog(10)alog(a)5)-3^(log(10)(x//10))=9^(log(100)x+log(...

    Text Solution

    |

  4. The equation x^([(log(3)x)^(2)-(9//2)log(3)x+5])=3sqrt(3) has

    Text Solution

    |

  5. The number of solutions the equation |x+1|^(log(x+1)(3+2x-x^(2)))=(x-3...

    Text Solution

    |

  6. The solution of the equation 5^(log(a)x)+5x^(log(a)5)=3, (agt0) is

    Text Solution

    |

  7. log(10)x+log(10)x^(1//2)+log(10)x^(1//4)+....=y and (1+3+5+...(2y-1))/...

    Text Solution

    |

  8. log((2x+3))(6x^(2)+23x+21) =4-log((3x+7))(4x^(2)+12x+9), then x=

    Text Solution

    |

  9. The number of solutions of the equation log(x-3)(x^(3)-3x^(2)-4x+8)=3 ...

    Text Solution

    |

  10. Let [x] denote the greatest integer function. The number of solutions ...

    Text Solution

    |

  11. The roots of the equation log(2)(x^(2)-4x+5)=(x-2) are

    Text Solution

    |

  12. If xlog(10)(10//3)+log(10)3=log(10)(2+3^(x))+x, then x=

    Text Solution

    |

  13. If log(y)x+log(x)y=2,x^(2)+y=12, then the values of x,y are

    Text Solution

    |

  14. If log(2)x+log(x)2=(10)/(3)=log(2)y+log(y)2 and xney then x+y =

    Text Solution

    |

  15. If 2^(x)-2^(x-1)=4, then x^(x) is equal to

    Text Solution

    |

  16. If log(2)xy=5,log(1//2)(x//y)=1, then the values of x,y are

    Text Solution

    |

  17. If (log)(10)[1/(2^x+x-1)]=x[(log)(10)5-1] , then x= 4 (b) 3 (c) 2 ...

    Text Solution

    |

  18. For agt0, ne 1 the roots of the equation log(ax)a+log(x)a^(2)+log(a^(2...

    Text Solution

    |

  19. The number of real solutions of the equation log(-x)=2log(x+1) is

    Text Solution

    |

  20. The equation (x^(2))/(1-|x-2|)=1 has

    Text Solution

    |