Home
Class 12
MATHS
log(10)x+log(10)x^(1//2)+log(10)x^(1//4)...

`log_(10)x+log_(10)x^(1//2)+log_(10)x^(1//4)+....=y` and `(1+3+5+...(2y-1))/(4+7+10+....(3y+1))=(20)/(7log_(10)x)` , then x=

A

`10^(5)`

B

`10^(4)`

C

`10^(3)`

D

`10^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will break it down into manageable parts. ### Step 1: Simplifying the first equation The first equation is: \[ \log_{10} x + \log_{10} x^{1/2} + \log_{10} x^{1/4} + \ldots = y \] Using the property of logarithms, we can rewrite the terms: \[ \log_{10} x^{1/2} = \frac{1}{2} \log_{10} x, \quad \log_{10} x^{1/4} = \frac{1}{4} \log_{10} x, \quad \text{and so on.} \] Thus, we can express the series as: \[ y = \log_{10} x \left( 1 + \frac{1}{2} + \frac{1}{4} + \ldots \right) \] The series \(1 + \frac{1}{2} + \frac{1}{4} + \ldots\) is an infinite geometric series where the first term \(a = 1\) and the common ratio \(r = \frac{1}{2}\). ### Step 2: Finding the sum of the infinite geometric series The sum \(S\) of an infinite geometric series can be calculated using the formula: \[ S = \frac{a}{1 - r} \] Substituting the values: \[ S = \frac{1}{1 - \frac{1}{2}} = \frac{1}{\frac{1}{2}} = 2 \] Thus, we have: \[ y = \log_{10} x \cdot 2 = 2 \log_{10} x \] ### Step 3: Substituting \(y\) into the second equation Now, we substitute \(y\) into the second equation: \[ \frac{1 + 3 + 5 + \ldots + (2y - 1)}{4 + 7 + 10 + \ldots + (3y + 1)} = \frac{20}{7 \log_{10} x} \] The numerator is the sum of the first \(y\) odd numbers, which is given by: \[ \text{Sum of first } y \text{ odd numbers} = y^2 \] The denominator is an arithmetic series where the first term \(a = 4\), the common difference \(d = 3\), and the number of terms is \(y\). The sum \(S\) of the first \(y\) terms of an arithmetic series is given by: \[ S = \frac{n}{2} \cdot (2a + (n-1)d) \] Substituting \(n = y\), \(a = 4\), and \(d = 3\): \[ S = \frac{y}{2} \cdot (2 \cdot 4 + (y - 1) \cdot 3) = \frac{y}{2} \cdot (8 + 3y - 3) = \frac{y}{2} \cdot (3y + 5) \] ### Step 4: Setting up the equation Now we can set up the equation: \[ \frac{y^2}{\frac{y}{2} \cdot (3y + 5)} = \frac{20}{7 \log_{10} x} \] Simplifying this gives: \[ \frac{2y}{3y + 5} = \frac{20}{7 \log_{10} x} \] ### Step 5: Cross-multiplying Cross-multiplying gives: \[ 2y \cdot 7 \log_{10} x = 20(3y + 5) \] This simplifies to: \[ 14y \log_{10} x = 60y + 100 \] ### Step 6: Isolating \(\log_{10} x\) Now, isolate \(\log_{10} x\): \[ 14y \log_{10} x - 60y = 100 \] Factoring out \(y\): \[ y(14 \log_{10} x - 60) = 100 \] Thus: \[ 14 \log_{10} x - 60 = \frac{100}{y} \] ### Step 7: Substituting \(y = 2 \log_{10} x\) Substituting \(y = 2 \log_{10} x\) into the equation: \[ 14 \log_{10} x - 60 = \frac{100}{2 \log_{10} x} \] This simplifies to: \[ 14 \log_{10} x - 60 = \frac{50}{\log_{10} x} \] ### Step 8: Multiplying through by \(\log_{10} x\) Multiply through by \(\log_{10} x\): \[ 14 (\log_{10} x)^2 - 60 \log_{10} x - 50 = 0 \] ### Step 9: Solving the quadratic equation Using the quadratic formula \(ax^2 + bx + c = 0\): \[ a = 14, \quad b = -60, \quad c = -50 \] The discriminant is: \[ D = b^2 - 4ac = (-60)^2 - 4 \cdot 14 \cdot (-50) = 3600 + 2800 = 6400 \] Thus: \[ \log_{10} x = \frac{-(-60) \pm \sqrt{6400}}{2 \cdot 14} = \frac{60 \pm 80}{28} \] Calculating the two possible values: 1. \(\log_{10} x = \frac{140}{28} = 5\) 2. \(\log_{10} x = \frac{-20}{28} = -\frac{5}{7}\) ### Step 10: Finding \(x\) Thus, we have: 1. If \(\log_{10} x = 5\), then \(x = 10^5\). 2. If \(\log_{10} x = -\frac{5}{7}\), then \(x = 10^{-\frac{5}{7}}\). ### Final Answer The value of \(x\) is: \[ x = 10^5 \quad \text{or} \quad x = 10^{-\frac{5}{7}} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

Solve the following equaions for x and y log_(10)x+(1)/(2)log_(10)x+(1)/(4)log_(10)x+"...."=y " and " (1+3+5+"...."+(2y-1))/(4+7+10+"...."+(3y-1))=(20)/(7log_(10)x) .

y=x^((1)/(log_(10)x))

log_(10)^(2) x + log_(10) x^(2) = log_(10)^(2) 2 - 1

Suppose x, y in N and log_(5)(x)+log_(5)(x^(1//2))+log_(5)(x^(1//4))+….=y" (1)" (1+3+5+….+(2y-1))/(4+7+10+…+(3y+1))=(20)/(7 log_(5)(x))" (2)" then log_(10)(y)+log_(5)(x)=

(log_(10)x)^(2)+log_(10)x^(2)=(log_(10)2)^(2)-1

Solve the following equations for x and y: log_10x+log_10(x)^(1/2)+log_10(x)^(1/4)+….=y (1+3+5+…+(2y-1))/(4+7+10+..+(3y+1))=20/(7log_10x)

If y=log_(10)x+log_(10)x^(1/3)+log_(10)x^(1/9)+ . . . and (2+4+6+ . . . +2y)/(3+6+9+ . . . +3y)=4/log_(10) x then find the value of x and y

log_(10){log10x}=1 then x

If for x,y in R , x gt 0 , y=log_(10)x+log_(10)x^(1//3)+log_(10)x^(1//9)+ ...........upto oo terms and (2+4+6+........+2y)/(3+6+9+.......+3y)=(4)/(log_(10)x) , then the ordered pair (x,y) is equal to :

If (1)/(log_(x)10)=(2)/(log_(a)10)-2, then x=

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (2) (Multiple choice questions)
  1. The number of solutions the equation |x+1|^(log(x+1)(3+2x-x^(2)))=(x-3...

    Text Solution

    |

  2. The solution of the equation 5^(log(a)x)+5x^(log(a)5)=3, (agt0) is

    Text Solution

    |

  3. log(10)x+log(10)x^(1//2)+log(10)x^(1//4)+....=y and (1+3+5+...(2y-1))/...

    Text Solution

    |

  4. log((2x+3))(6x^(2)+23x+21) =4-log((3x+7))(4x^(2)+12x+9), then x=

    Text Solution

    |

  5. The number of solutions of the equation log(x-3)(x^(3)-3x^(2)-4x+8)=3 ...

    Text Solution

    |

  6. Let [x] denote the greatest integer function. The number of solutions ...

    Text Solution

    |

  7. The roots of the equation log(2)(x^(2)-4x+5)=(x-2) are

    Text Solution

    |

  8. If xlog(10)(10//3)+log(10)3=log(10)(2+3^(x))+x, then x=

    Text Solution

    |

  9. If log(y)x+log(x)y=2,x^(2)+y=12, then the values of x,y are

    Text Solution

    |

  10. If log(2)x+log(x)2=(10)/(3)=log(2)y+log(y)2 and xney then x+y =

    Text Solution

    |

  11. If 2^(x)-2^(x-1)=4, then x^(x) is equal to

    Text Solution

    |

  12. If log(2)xy=5,log(1//2)(x//y)=1, then the values of x,y are

    Text Solution

    |

  13. If (log)(10)[1/(2^x+x-1)]=x[(log)(10)5-1] , then x= 4 (b) 3 (c) 2 ...

    Text Solution

    |

  14. For agt0, ne 1 the roots of the equation log(ax)a+log(x)a^(2)+log(a^(2...

    Text Solution

    |

  15. The number of real solutions of the equation log(-x)=2log(x+1) is

    Text Solution

    |

  16. The equation (x^(2))/(1-|x-2|)=1 has

    Text Solution

    |

  17. The equation (x^(2))/(|x-2|)=|(2x)/(x-2)|+|x| has solutions whose numb...

    Text Solution

    |

  18. The roots of the equation |x^(2)-x-6|=x+2 are

    Text Solution

    |

  19. The set of all real numbers x for which x^2-|x+2| +x gt 0 is

    Text Solution

    |

  20. The number of real roots of the equation |x|^(2) -3|x| + 2 = 0, is

    Text Solution

    |