Home
Class 12
MATHS
If xlog(10)(10//3)+log(10)3=log(10)(2+3^...

If `xlog_(10)(10//3)+log_(10)3=log_(10)(2+3^(x))+x`, then x=

A

`1`

B

`0`

C

`-1`

D

`2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x \log_{10} \left(\frac{10}{3}\right) + \log_{10} 3 = \log_{10} (2 + 3^x) + x \), we will follow these steps: ### Step 1: Rewrite the equation using logarithmic properties We can start by rewriting the left-hand side of the equation using the property of logarithms \( \log_a b - \log_a c = \log_a \left(\frac{b}{c}\right) \). \[ x \log_{10} \left(\frac{10}{3}\right) + \log_{10} 3 = \log_{10} 10 - \log_{10} 3 + \log_{10} 3 \] This simplifies to: \[ x \log_{10} \left(\frac{10}{3}\right) + \log_{10} 3 = \log_{10} 10 \] ### Step 2: Isolate the logarithmic terms Now, we can isolate the logarithmic terms on one side of the equation: \[ x \log_{10} \left(\frac{10}{3}\right) = \log_{10} 10 - \log_{10} (2 + 3^x) \] ### Step 3: Simplify the equation Using the property of logarithms that states \( \log_a b - \log_a c = \log_a \left(\frac{b}{c}\right) \): \[ x \log_{10} \left(\frac{10}{3}\right) = \log_{10} \left(\frac{10}{2 + 3^x}\right) \] ### Step 4: Exponentiate both sides To eliminate the logarithm, we exponentiate both sides: \[ \frac{10}{3^x} = \frac{10}{2 + 3^x} \] ### Step 5: Cross-multiply Cross-multiply to eliminate the fractions: \[ 10(2 + 3^x) = 10 \cdot 3^x \] ### Step 6: Simplify the equation This simplifies to: \[ 20 + 10 \cdot 3^x = 10 \cdot 3^x \] ### Step 7: Solve for x Subtract \( 10 \cdot 3^x \) from both sides: \[ 20 = 0 \] This indicates that we need to check for specific values of \( x \) that satisfy the original equation. ### Step 8: Test possible values of x We can test \( x = 0, -1, 1, 2 \) as potential solutions: 1. **For \( x = 0 \)**: \[ 0 \cdot \log_{10} \left(\frac{10}{3}\right) + \log_{10} 3 = \log_{10} (2 + 3^0) + 0 \] \[ \log_{10} 3 = \log_{10} (2 + 1) = \log_{10} 3 \quad \text{(True)} \] 2. **For \( x = -1 \)**: \[ -1 \cdot \log_{10} \left(\frac{10}{3}\right) + \log_{10} 3 = \log_{10} (2 + 3^{-1}) - 1 \] This does not hold true. 3. **For \( x = 1 \)**: \[ 1 \cdot \log_{10} \left(\frac{10}{3}\right) + \log_{10} 3 = \log_{10} (2 + 3^1) + 1 \] This does not hold true. 4. **For \( x = 2 \)**: \[ 2 \cdot \log_{10} \left(\frac{10}{3}\right) + \log_{10} 3 = \log_{10} (2 + 3^2) + 2 \] This does not hold true. ### Conclusion The only value that satisfies the original equation is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

What is the solution of the equation x log _(10) ((10)/(3)) + log _(10) 3 = log _(10) (2 + 3 ^(x)) + x ?

If log_(10)2 log_(2)10 + log_(10)(10^(x)) =2 , then what is the value of x?

if x+log_(10)(1+2^(x))=x log_(10)5+log_(10)6 then x

If log_(10)(x-1)^3-3log_(10)(x-3)=log_(10)8,then log_(x)625 has the value equal to :

If log_(10)(x-1)^(3)-3log_(10)8(x-3)=log_(10)8 then log_(x)625 has the value of equal to: 5(b)4 (c) 3 (d) 2

If x+log_(10)(1+2^(x))=xlog_(10)5+log_(10)6 then x is equal to

If log_(10)2, log_(10)(2^(x)-1) and log_(10)(2^(x)+3) are three consecutive terms of an A.P, then the value of x is

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (2) (Multiple choice questions)
  1. Let [x] denote the greatest integer function. The number of solutions ...

    Text Solution

    |

  2. The roots of the equation log(2)(x^(2)-4x+5)=(x-2) are

    Text Solution

    |

  3. If xlog(10)(10//3)+log(10)3=log(10)(2+3^(x))+x, then x=

    Text Solution

    |

  4. If log(y)x+log(x)y=2,x^(2)+y=12, then the values of x,y are

    Text Solution

    |

  5. If log(2)x+log(x)2=(10)/(3)=log(2)y+log(y)2 and xney then x+y =

    Text Solution

    |

  6. If 2^(x)-2^(x-1)=4, then x^(x) is equal to

    Text Solution

    |

  7. If log(2)xy=5,log(1//2)(x//y)=1, then the values of x,y are

    Text Solution

    |

  8. If (log)(10)[1/(2^x+x-1)]=x[(log)(10)5-1] , then x= 4 (b) 3 (c) 2 ...

    Text Solution

    |

  9. For agt0, ne 1 the roots of the equation log(ax)a+log(x)a^(2)+log(a^(2...

    Text Solution

    |

  10. The number of real solutions of the equation log(-x)=2log(x+1) is

    Text Solution

    |

  11. The equation (x^(2))/(1-|x-2|)=1 has

    Text Solution

    |

  12. The equation (x^(2))/(|x-2|)=|(2x)/(x-2)|+|x| has solutions whose numb...

    Text Solution

    |

  13. The roots of the equation |x^(2)-x-6|=x+2 are

    Text Solution

    |

  14. The set of all real numbers x for which x^2-|x+2| +x gt 0 is

    Text Solution

    |

  15. The number of real roots of the equation |x|^(2) -3|x| + 2 = 0, is

    Text Solution

    |

  16. The sum of the roots of equation (x-4)^(2)-8|x-4|+15=0 is

    Text Solution

    |

  17. Root(s) of the equatio 9x^(2) - 18|x|+5 = 0 belonging to the domain of...

    Text Solution

    |

  18. The equation |x-x^(2)-1|=|2x-3-x^(2)| has

    Text Solution

    |

  19. The sum of the real roots of the equation |x-2|^(2)+|x-2|-2=0 is

    Text Solution

    |

  20. The product of real roots of the equation |3x-4|^(2)-3|3x-4|+2=0 is

    Text Solution

    |