Home
Class 12
MATHS
If log(2)x+log(x)2=(10)/(3)=log(2)y+log(...

If `log_(2)x+log_(x)2=(10)/(3)=log_(2)y+log_(y)2` and `xney` then `x+y` =

A

`2`

B

`65//8`

C

`37//6`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{2}x + \log_{x}2 = \frac{10}{3} = \log_{2}y + \log_{y}2 \) and find \( x + y \) given that \( x \neq y \), we can follow these steps: ### Step 1: Rewrite the logarithmic expressions Using the change of base formula, we can rewrite \( \log_{x}2 \) as \( \frac{1}{\log_{2}x} \). Thus, we can rewrite the equation as: \[ \log_{2}x + \frac{1}{\log_{2}x} = \frac{10}{3} \] Let \( t = \log_{2}x \). Then, we have: \[ t + \frac{1}{t} = \frac{10}{3} \] ### Step 2: Multiply through by \( t \) To eliminate the fraction, multiply both sides by \( t \): \[ t^2 + 1 = \frac{10}{3}t \] Rearranging gives us: \[ 3t^2 - 10t + 3 = 0 \] ### Step 3: Solve the quadratic equation We can use the quadratic formula \( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \) where \( a = 3, b = -10, c = 3 \): \[ t = \frac{10 \pm \sqrt{(-10)^2 - 4 \cdot 3 \cdot 3}}{2 \cdot 3} \] Calculating the discriminant: \[ t = \frac{10 \pm \sqrt{100 - 36}}{6} = \frac{10 \pm \sqrt{64}}{6} = \frac{10 \pm 8}{6} \] This gives us two solutions: \[ t_1 = \frac{18}{6} = 3 \quad \text{and} \quad t_2 = \frac{2}{6} = \frac{1}{3} \] ### Step 4: Find \( x \) and \( y \) Since \( t = \log_{2}x \), we can find \( x \): 1. If \( t = 3 \), then \( x = 2^3 = 8 \). 2. If \( t = \frac{1}{3} \), then \( x = 2^{1/3} = \sqrt[3]{2} \). Now, we have two pairs of values for \( x \) and \( y \): - If \( x = 8 \), then \( \log_{2}y + \log_{y}2 = \frac{10}{3} \) will yield \( y = 2 \) (since \( \log_{2}2 = 1 \)). - If \( x = \sqrt[3]{2} \), then \( y = 4 \) (since \( \log_{2}4 = 2 \)). ### Step 5: Calculate \( x + y \) Now we can calculate \( x + y \): 1. If \( x = 8 \) and \( y = 2 \): \[ x + y = 8 + 2 = 10 \] 2. If \( x = \sqrt[3]{2} \) and \( y = 4 \): \[ x + y = \sqrt[3]{2} + 4 \] However, since \( x \) and \( y \) must be distinct and we already have \( x = 8 \) and \( y = 2 \) as a valid pair, we take \( x + y = 10 \). Thus, the final answer is: \[ \boxed{10} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If log_(2)x+log_(x)2=(10)/(3)=log_(2)y+log_(y)2 and x!=y, then x+y=

If log_(2)x+log_(x)2=(10)/(3)=log_(2)y+log_(y)2 and x!=y find x+y

log_(2)x+log_(x)2=(10)/(3)=log_(2)y+log_(y)2 and x!=y, the x+y2(b)65/8(c)37/6 (d) none of these

1+log_(x)y=log_(2)y

If log_(5)x-log_(5)y = log_(5)4 + log_(5)2 and x - y = 7 , then = ______ .

If (log_(3)x)(log_(x)2x)(log_(2x)y)=log_(x)x^(2) , then what is y equal to?

if log_(9)x+log_(4)y=(7)/(2) and log_(9)x-log_(8)y=-(3)/(2) then x+y is

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (2) (Multiple choice questions)
  1. If xlog(10)(10//3)+log(10)3=log(10)(2+3^(x))+x, then x=

    Text Solution

    |

  2. If log(y)x+log(x)y=2,x^(2)+y=12, then the values of x,y are

    Text Solution

    |

  3. If log(2)x+log(x)2=(10)/(3)=log(2)y+log(y)2 and xney then x+y =

    Text Solution

    |

  4. If 2^(x)-2^(x-1)=4, then x^(x) is equal to

    Text Solution

    |

  5. If log(2)xy=5,log(1//2)(x//y)=1, then the values of x,y are

    Text Solution

    |

  6. If (log)(10)[1/(2^x+x-1)]=x[(log)(10)5-1] , then x= 4 (b) 3 (c) 2 ...

    Text Solution

    |

  7. For agt0, ne 1 the roots of the equation log(ax)a+log(x)a^(2)+log(a^(2...

    Text Solution

    |

  8. The number of real solutions of the equation log(-x)=2log(x+1) is

    Text Solution

    |

  9. The equation (x^(2))/(1-|x-2|)=1 has

    Text Solution

    |

  10. The equation (x^(2))/(|x-2|)=|(2x)/(x-2)|+|x| has solutions whose numb...

    Text Solution

    |

  11. The roots of the equation |x^(2)-x-6|=x+2 are

    Text Solution

    |

  12. The set of all real numbers x for which x^2-|x+2| +x gt 0 is

    Text Solution

    |

  13. The number of real roots of the equation |x|^(2) -3|x| + 2 = 0, is

    Text Solution

    |

  14. The sum of the roots of equation (x-4)^(2)-8|x-4|+15=0 is

    Text Solution

    |

  15. Root(s) of the equatio 9x^(2) - 18|x|+5 = 0 belonging to the domain of...

    Text Solution

    |

  16. The equation |x-x^(2)-1|=|2x-3-x^(2)| has

    Text Solution

    |

  17. The sum of the real roots of the equation |x-2|^(2)+|x-2|-2=0 is

    Text Solution

    |

  18. The product of real roots of the equation |3x-4|^(2)-3|3x-4|+2=0 is

    Text Solution

    |

  19. The equation sqrt(x+1)-sqrt(x-1)=sqrt(4x-1) has a. no solution b. o...

    Text Solution

    |

  20. The number of the integer solutions of x^(2)+9lt(x+3)^(2)lt8x+25 is

    Text Solution

    |