Home
Class 12
MATHS
If log(5)(6+(2)/(x))+log((1//5))(1+(x)/(...

If `log_(5)(6+(2)/(x))+log_((1//5))(1+(x)/(10))le1`, then `x` lies in

A

`(1-sqrt(5),1)`

B

`(1,1+sqrt(5))`

C

`(1-sqrt(5),1+sqrt(5))`

D

`(-oo,1-sqrt(5)]uu[1+sqrt(5),oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \log_{5}\left(6 + \frac{2}{x}\right) + \log_{\frac{1}{5}}\left(1 + \frac{x}{10}\right) \leq 1 \), we will follow these steps: ### Step 1: Rewrite the logarithm Using the property of logarithms, we know that \( \log_{\frac{1}{5}}(a) = -\log_{5}(a) \). Therefore, we can rewrite the inequality as: \[ \log_{5}\left(6 + \frac{2}{x}\right) - \log_{5}\left(1 + \frac{x}{10}\right) \leq 1 \] ### Step 2: Combine the logarithms Using the property \( \log_{a}(b) - \log_{a}(c) = \log_{a}\left(\frac{b}{c}\right) \), we can combine the logarithms: \[ \log_{5}\left(\frac{6 + \frac{2}{x}}{1 + \frac{x}{10}}\right) \leq 1 \] ### Step 3: Exponentiate both sides To eliminate the logarithm, we exponentiate both sides. Since the base \( 5 \) is greater than \( 1 \), the inequality direction remains the same: \[ \frac{6 + \frac{2}{x}}{1 + \frac{x}{10}} \leq 5 \] ### Step 4: Cross-multiply Cross-multiplying gives us: \[ 6 + \frac{2}{x} \leq 5\left(1 + \frac{x}{10}\right) \] Expanding the right side: \[ 6 + \frac{2}{x} \leq 5 + \frac{5x}{10} \] ### Step 5: Simplify the inequality This simplifies to: \[ 6 + \frac{2}{x} \leq 5 + \frac{x}{2} \] Subtract \( 5 \) from both sides: \[ 1 + \frac{2}{x} \leq \frac{x}{2} \] ### Step 6: Eliminate the fraction To eliminate the fraction, multiply through by \( 2x \) (assuming \( x > 0 \)): \[ 2x + 4 \leq x^2 \] ### Step 7: Rearrange the inequality Rearranging gives: \[ x^2 - 2x - 4 \geq 0 \] ### Step 8: Solve the quadratic inequality To solve \( x^2 - 2x - 4 = 0 \), we use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{2 \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot (-4)}}{2 \cdot 1} \] Calculating the discriminant: \[ x = \frac{2 \pm \sqrt{4 + 16}}{2} = \frac{2 \pm \sqrt{20}}{2} = \frac{2 \pm 2\sqrt{5}}{2} = 1 \pm \sqrt{5} \] ### Step 9: Determine the intervals The roots are \( 1 - \sqrt{5} \) and \( 1 + \sqrt{5} \). The quadratic opens upwards, so the solution to the inequality \( x^2 - 2x - 4 \geq 0 \) is: \[ x \leq 1 - \sqrt{5} \quad \text{or} \quad x \geq 1 + \sqrt{5} \] ### Final Solution Thus, the solution set for \( x \) is: \[ (-\infty, 1 - \sqrt{5}] \cup [1 + \sqrt{5}, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If log_(5)(5^((1)/(x))+125)=log_(5)6+1+(1)/(2x), then x=

log_5 ((2+x)/10)=log_5 (2/(x+1))

If log_(0.5)log_(5)(x^(2)-4)>log_(0.5)1, then' x' lies in the interval

log_((1)/(2))log_(3)(x^(2)+5)+1<=0

2log_(2)(log_(2)x)+log_((1)/(5))(log_(2)2sqrt(2x))=1

If log_((1)/(sqrt(2)))(x-1)>2, then x lies is the interval

If log_(0,2)(x-1)>log_(0.04)(x+5) then

If log_(5)(x^(2)+x)-log_(5)(x+1)=2, then the value of x is a.5 b.10 c.25 d.32

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (2) (Multiple choice questions)
  1. The sum of the real roots of the equation |x-2|^(2)+|x-2|-2=0 is

    Text Solution

    |

  2. The product of real roots of the equation |3x-4|^(2)-3|3x-4|+2=0 is

    Text Solution

    |

  3. The equation sqrt(x+1)-sqrt(x-1)=sqrt(4x-1) has a. no solution b. o...

    Text Solution

    |

  4. The number of the integer solutions of x^(2)+9lt(x+3)^(2)lt8x+25 is

    Text Solution

    |

  5. The solution set of the inequality log(x)((x+3)/(1-2x))gt1 is

    Text Solution

    |

  6. The least positive integer x satisfying |x+1|+|x-4|gt7 is

    Text Solution

    |

  7. Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

    Text Solution

    |

  8. The number of values of x satisfying 1+log(5)(x^(2)+1)gelog(5)(x^(2)+4...

    Text Solution

    |

  9. The number of solutions the equation |x+1|^(log(x+1)(3+2x-x^(2)))=(x-3...

    Text Solution

    |

  10. If log(5)(6+(2)/(x))+log((1//5))(1+(x)/(10))le1, then x lies in

    Text Solution

    |

  11. The quadratic equations Sigma ((x-q)(x-r))/((p-q)(p-r))-1=0 or Sigma (...

    Text Solution

    |

  12. The number of solutions of the equation root3((1+x))+root3((8-x))=3 i...

    Text Solution

    |

  13. The number of solutions of the equation 2^(x)+2^(x-1)+2^(x-2)=5^(x)+5^...

    Text Solution

    |

  14. The number of solutions of the equation 2x^(log(10)x)+3x^(log(10)(1//x...

    Text Solution

    |

  15. The system of equation |x-1|+3y=4,x-|y-1|=2 has

    Text Solution

    |

  16. The roots of the equation 2^(x+2)27^(x//(x-1))=9 are given by

    Text Solution

    |

  17. If 2^(x+y)=6^(y) and 3^(x-1)=2^(y+1), then the value of (log3-log2)//(...

    Text Solution

    |

  18. If (7-4sqrt(3))^(x^(2)-4x+3)+(7+4sqrt(3))^(x^(2)-4x+3)=14, then the va...

    Text Solution

    |

  19. If (5+2sqrt6)^(x^(2)-3)+(5-2sqrt6)^(x^(2)-3)=10, then x =

    Text Solution

    |

  20. The roots of the equation (p+sqrt(q))^(x^(2)-15)+(p-sqrt(q))^(x^(2)-15...

    Text Solution

    |