Home
Class 12
MATHS
If 2^(x+y)=6^(y) and 3^(x-1)=2^(y+1), th...

If `2^(x+y)=6^(y)` and `3^(x-1)=2^(y+1)`, then the value of `(log3-log2)//(x-y)` is

A

`1`

B

`log_(2)3-log_(3)2`

C

`log(3//2)`

D

`log3-log2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the two equations given: 1. \( 2^{(x+y)} = 6^y \) 2. \( 3^{(x-1)} = 2^{(y+1)} \) We need to find the value of \( \frac{\log 3 - \log 2}{x - y} \). ### Step 1: Take logarithms of both equations For the first equation: \[ \log(2^{(x+y)}) = \log(6^y) \] Using the property of logarithms \( \log(a^b) = b \log(a) \): \[ (x+y) \log 2 = y \log 6 \] Now, we can express \( \log 6 \) as \( \log(2 \cdot 3) = \log 2 + \log 3 \): \[ (x+y) \log 2 = y (\log 2 + \log 3) \] Expanding this gives: \[ x \log 2 + y \log 2 = y \log 2 + y \log 3 \] Subtracting \( y \log 2 \) from both sides: \[ x \log 2 = y \log 3 \] Thus, we have: \[ \frac{x}{y} = \frac{\log 3}{\log 2} \quad \text{(1)} \] ### Step 2: Take logarithms of the second equation For the second equation: \[ \log(3^{(x-1)}) = \log(2^{(y+1)}) \] Using the property of logarithms: \[ (x-1) \log 3 = (y+1) \log 2 \] Expanding this gives: \[ x \log 3 - \log 3 = y \log 2 + \log 2 \] Rearranging gives: \[ x \log 3 - y \log 2 = \log 3 + \log 2 \] Now we can express this as: \[ x \log 3 = y \log 2 + \log 3 + \log 2 \] ### Step 3: Substitute \( x \) from equation (1) From equation (1), we can express \( x \) in terms of \( y \): \[ x = y \cdot \frac{\log 3}{\log 2} \] Substituting this into the equation: \[ \left(y \cdot \frac{\log 3}{\log 2}\right) \log 3 = y \log 2 + \log 3 + \log 2 \] ### Step 4: Simplify the equation Expanding gives: \[ y \cdot \frac{\log 3^2}{\log 2} = y \log 2 + \log 3 + \log 2 \] Multiplying through by \( \log 2 \) to eliminate the fraction: \[ y \log 3^2 = y \log^2 2 + \log 2 \log 3 + \log^2 2 \] ### Step 5: Solve for \( y \) Rearranging gives: \[ y (\log 3^2 - \log^2 2) = \log 2 \log 3 + \log^2 2 \] Thus: \[ y = \frac{\log 2 \log 3 + \log^2 2}{\log 3^2 - \log^2 2} \] ### Step 6: Find \( x - y \) Using the expression for \( x \): \[ x - y = y \cdot \frac{\log 3}{\log 2} - y \] Factoring out \( y \): \[ x - y = y \left( \frac{\log 3}{\log 2} - 1 \right) = y \cdot \frac{\log 3 - \log 2}{\log 2} \] ### Step 7: Find \( \frac{\log 3 - \log 2}{x - y} \) Substituting into our expression: \[ \frac{\log 3 - \log 2}{x - y} = \frac{\log 3 - \log 2}{y \cdot \frac{\log 3 - \log 2}{\log 2}} = \frac{\log 2}{y} \] ### Final Step: Substitute \( y \) We know \( y \) from earlier, hence: \[ \frac{\log 2}{y} = \frac{\log 2}{\frac{\log 2 \log 3 + \log^2 2}{\log 3^2 - \log^2 2}} = \frac{(\log 3^2 - \log^2 2) \log 2}{\log 2 \log 3 + \log^2 2} \] This simplifies to: \[ \frac{\log 3^2 - \log^2 2}{\log 3 + \log 2} \] Thus, the final answer is: \[ \frac{\log 3 - \log 2}{x - y} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If 2^(x+y) = 6^(y) and 3^(x-1) = 2^(y+1) , then the value of (log 3 - log 2)//(x-y) is

If x^(2a-3)y^(2a)=x^(6-a)y^(5a) then the value of a log((x)/(y))=

If x^(2) - y^(2) = 1, (x gt y) then find the value of log_(x-y) (x+y)

The x,y,z are positive real numbers such that log_(2x)z=3,log_(5y)z=6, and log_(xy)z=(2)/(3), then the value of ((1)/(2z)) is .........

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If x^(2)-y^(2) =1 , (x gt y) ,then find the value of log(x-y) (x+y)

If log_(y)x+log_(x)y=7, then the value of (log_(y)x)^(2)+(log_(x)y)^(2), is

If the solutions to the systom of equations given by log_(4095)x+log_(2015)y=2 and log_(x)4096-log_(2)2013=1are(x_(1)y_(1)) and (x_(1),y_(2)) then the value of log_(4)(x_(1)y_(1)x_(2)y_(2)) is

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (2) (Multiple choice questions)
  1. The sum of the real roots of the equation |x-2|^(2)+|x-2|-2=0 is

    Text Solution

    |

  2. The product of real roots of the equation |3x-4|^(2)-3|3x-4|+2=0 is

    Text Solution

    |

  3. The equation sqrt(x+1)-sqrt(x-1)=sqrt(4x-1) has a. no solution b. o...

    Text Solution

    |

  4. The number of the integer solutions of x^(2)+9lt(x+3)^(2)lt8x+25 is

    Text Solution

    |

  5. The solution set of the inequality log(x)((x+3)/(1-2x))gt1 is

    Text Solution

    |

  6. The least positive integer x satisfying |x+1|+|x-4|gt7 is

    Text Solution

    |

  7. Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

    Text Solution

    |

  8. The number of values of x satisfying 1+log(5)(x^(2)+1)gelog(5)(x^(2)+4...

    Text Solution

    |

  9. The number of solutions the equation |x+1|^(log(x+1)(3+2x-x^(2)))=(x-3...

    Text Solution

    |

  10. If log(5)(6+(2)/(x))+log((1//5))(1+(x)/(10))le1, then x lies in

    Text Solution

    |

  11. The quadratic equations Sigma ((x-q)(x-r))/((p-q)(p-r))-1=0 or Sigma (...

    Text Solution

    |

  12. The number of solutions of the equation root3((1+x))+root3((8-x))=3 i...

    Text Solution

    |

  13. The number of solutions of the equation 2^(x)+2^(x-1)+2^(x-2)=5^(x)+5^...

    Text Solution

    |

  14. The number of solutions of the equation 2x^(log(10)x)+3x^(log(10)(1//x...

    Text Solution

    |

  15. The system of equation |x-1|+3y=4,x-|y-1|=2 has

    Text Solution

    |

  16. The roots of the equation 2^(x+2)27^(x//(x-1))=9 are given by

    Text Solution

    |

  17. If 2^(x+y)=6^(y) and 3^(x-1)=2^(y+1), then the value of (log3-log2)//(...

    Text Solution

    |

  18. If (7-4sqrt(3))^(x^(2)-4x+3)+(7+4sqrt(3))^(x^(2)-4x+3)=14, then the va...

    Text Solution

    |

  19. If (5+2sqrt6)^(x^(2)-3)+(5-2sqrt6)^(x^(2)-3)=10, then x =

    Text Solution

    |

  20. The roots of the equation (p+sqrt(q))^(x^(2)-15)+(p-sqrt(q))^(x^(2)-15...

    Text Solution

    |