Home
Class 12
MATHS
If (7-4sqrt(3))^(x^(2)-4x+3)+(7+4sqrt(3)...

If `(7-4sqrt(3))^(x^(2)-4x+3)+(7+4sqrt(3))^(x^(2)-4x+3)=14`, then the value of `x` is given by

A

`2`

B

`2-sqrt(2)`

C

`2+sqrt(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (7 - 4\sqrt{3})^{x^2 - 4x + 3} + (7 + 4\sqrt{3})^{x^2 - 4x + 3} = 14 \), we will follow these steps: ### Step 1: Define a substitution Let \( t = x^2 - 4x + 3 \). Then, we can rewrite the equation as: \[ (7 - 4\sqrt{3})^t + (7 + 4\sqrt{3})^t = 14 \] ### Step 2: Simplify the bases We can calculate \( (7 - 4\sqrt{3})(7 + 4\sqrt{3}) \): \[ (7 - 4\sqrt{3})(7 + 4\sqrt{3}) = 7^2 - (4\sqrt{3})^2 = 49 - 48 = 1 \] This means that: \[ (7 + 4\sqrt{3}) = \frac{1}{(7 - 4\sqrt{3})} \] ### Step 3: Rewrite the equation Using the relationship from Step 2, we can rewrite the equation: \[ (7 - 4\sqrt{3})^t + \left(\frac{1}{(7 - 4\sqrt{3})}\right)^t = 14 \] Let \( a = (7 - 4\sqrt{3})^t \). Then the equation becomes: \[ a + \frac{1}{a} = 14 \] ### Step 4: Multiply through by \( a \) Multiply both sides by \( a \) to eliminate the fraction: \[ a^2 + 1 = 14a \] Rearranging gives us: \[ a^2 - 14a + 1 = 0 \] ### Step 5: Solve the quadratic equation Using the quadratic formula \( a = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ a = \frac{14 \pm \sqrt{(-14)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1} = \frac{14 \pm \sqrt{196 - 4}}{2} = \frac{14 \pm \sqrt{192}}{2} \] \[ = \frac{14 \pm 8\sqrt{3}}{2} = 7 \pm 4\sqrt{3} \] ### Step 6: Determine the values of \( t \) Since \( a = (7 - 4\sqrt{3})^t \), we have two cases: 1. \( (7 - 4\sqrt{3})^t = 7 - 4\sqrt{3} \) 2. \( (7 - 4\sqrt{3})^t = 7 + 4\sqrt{3} \) #### Case 1: For \( (7 - 4\sqrt{3})^t = 7 - 4\sqrt{3} \): This implies \( t = 1 \). #### Case 2: For \( (7 - 4\sqrt{3})^t = 7 + 4\sqrt{3} \): This implies \( t = -1 \). ### Step 7: Solve for \( x \) Now we need to solve for \( x \) using the values of \( t \): 1. If \( t = 1 \): \[ x^2 - 4x + 3 = 1 \implies x^2 - 4x + 2 = 0 \] Using the quadratic formula: \[ x = \frac{4 \pm \sqrt{16 - 8}}{2} = \frac{4 \pm 2\sqrt{2}}{2} = 2 \pm \sqrt{2} \] 2. If \( t = -1 \): \[ x^2 - 4x + 3 = -1 \implies x^2 - 4x + 4 = 0 \implies (x - 2)^2 = 0 \implies x = 2 \] ### Final Solutions The possible values of \( x \) are: \[ x = 2 + \sqrt{2}, \quad x = 2 - \sqrt{2}, \quad x = 2 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (true and false)|1 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (2) (fill in the blanks)|14 Videos
  • LOGARITHMS AND SURDS

    ML KHANNA|Exercise Problem Set (1) (Fill in the blanks)|9 Videos
  • LINEAR PROGRAMMING

    ML KHANNA|Exercise Self Assessment Test|8 Videos
  • MATHEMATICAL REASONING

    ML KHANNA|Exercise PROBLEM SET (2) ASSERTION/REASON|3 Videos

Similar Questions

Explore conceptually related problems

If (7+4sqrt(3))^(x^(2-8))+(7-4sqrt(3))^(x^(2-8))=14, thenx =

(7-4sqrt(3))^(^^)x+(7+4sqrt(3))^(^^)x=14backslash

If sqrt3x - 2=2sqrt3 + 4 , then the value of x is

If (5x-7)/(3)+2 =(4x-3)/(4)+4x , then the value of (8x+5) is

If x=7-4sqrt(3), then the value of x+(1)/(x) is:

ML KHANNA-LOGARITHMS AND SURDS-Problem Set (2) (Multiple choice questions)
  1. The sum of the real roots of the equation |x-2|^(2)+|x-2|-2=0 is

    Text Solution

    |

  2. The product of real roots of the equation |3x-4|^(2)-3|3x-4|+2=0 is

    Text Solution

    |

  3. The equation sqrt(x+1)-sqrt(x-1)=sqrt(4x-1) has a. no solution b. o...

    Text Solution

    |

  4. The number of the integer solutions of x^(2)+9lt(x+3)^(2)lt8x+25 is

    Text Solution

    |

  5. The solution set of the inequality log(x)((x+3)/(1-2x))gt1 is

    Text Solution

    |

  6. The least positive integer x satisfying |x+1|+|x-4|gt7 is

    Text Solution

    |

  7. Solve sqrt(x+3-4sqrt(x-1))+sqrt(x+8-6sqrt(x-1))=1

    Text Solution

    |

  8. The number of values of x satisfying 1+log(5)(x^(2)+1)gelog(5)(x^(2)+4...

    Text Solution

    |

  9. The number of solutions the equation |x+1|^(log(x+1)(3+2x-x^(2)))=(x-3...

    Text Solution

    |

  10. If log(5)(6+(2)/(x))+log((1//5))(1+(x)/(10))le1, then x lies in

    Text Solution

    |

  11. The quadratic equations Sigma ((x-q)(x-r))/((p-q)(p-r))-1=0 or Sigma (...

    Text Solution

    |

  12. The number of solutions of the equation root3((1+x))+root3((8-x))=3 i...

    Text Solution

    |

  13. The number of solutions of the equation 2^(x)+2^(x-1)+2^(x-2)=5^(x)+5^...

    Text Solution

    |

  14. The number of solutions of the equation 2x^(log(10)x)+3x^(log(10)(1//x...

    Text Solution

    |

  15. The system of equation |x-1|+3y=4,x-|y-1|=2 has

    Text Solution

    |

  16. The roots of the equation 2^(x+2)27^(x//(x-1))=9 are given by

    Text Solution

    |

  17. If 2^(x+y)=6^(y) and 3^(x-1)=2^(y+1), then the value of (log3-log2)//(...

    Text Solution

    |

  18. If (7-4sqrt(3))^(x^(2)-4x+3)+(7+4sqrt(3))^(x^(2)-4x+3)=14, then the va...

    Text Solution

    |

  19. If (5+2sqrt6)^(x^(2)-3)+(5-2sqrt6)^(x^(2)-3)=10, then x =

    Text Solution

    |

  20. The roots of the equation (p+sqrt(q))^(x^(2)-15)+(p-sqrt(q))^(x^(2)-15...

    Text Solution

    |