Home
Class 12
MATHS
If x+y=1, then sum(r=0)^(n)r^(2)""^(n)C(...

If `x+y=1`, then `sum_(r=0)^(n)r^(2)""^(n)C_(r )x^(r )y^(n-r)` equals.

A

nxy

B

nx (x + yn)

C

nx(nx+y)

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} x^r y^{n-r} \] given that \( x + y = 1 \). ### Step 1: Rewrite \( r^2 \) We can express \( r^2 \) as: \[ r^2 = r(r-1) + r \] This allows us to split the original sum into two separate sums: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} x^r y^{n-r} = \sum_{r=0}^{n} r(r-1) \binom{n}{r} x^r y^{n-r} + \sum_{r=0}^{n} r \binom{n}{r} x^r y^{n-r} \] ### Step 2: Evaluate the first sum The first sum can be simplified: \[ \sum_{r=0}^{n} r(r-1) \binom{n}{r} x^r y^{n-r} \] Using the identity \( r(r-1) \binom{n}{r} = n(n-1) \binom{n-2}{r-2} \), we can rewrite the sum: \[ \sum_{r=2}^{n} n(n-1) \binom{n-2}{r-2} x^r y^{n-r} \] Changing the index of summation by letting \( k = r - 2 \): \[ = n(n-1) x^2 \sum_{k=0}^{n-2} \binom{n-2}{k} x^k y^{(n-2)-k} \] By the Binomial Theorem, this sum equals \( (x + y)^{n-2} = 1^{n-2} = 1 \). Thus, we have: \[ \sum_{r=0}^{n} r(r-1) \binom{n}{r} x^r y^{n-r} = n(n-1) x^2 \] ### Step 3: Evaluate the second sum The second sum is: \[ \sum_{r=0}^{n} r \binom{n}{r} x^r y^{n-r} \] Using the identity \( r \binom{n}{r} = n \binom{n-1}{r-1} \), we can rewrite it as: \[ n \sum_{r=1}^{n} \binom{n-1}{r-1} x^r y^{n-r} \] Changing the index of summation by letting \( k = r - 1 \): \[ = n x \sum_{k=0}^{n-1} \binom{n-1}{k} x^k y^{(n-1)-k} \] Again, by the Binomial Theorem, this sum equals \( (x + y)^{n-1} = 1^{n-1} = 1 \). Thus, we have: \[ \sum_{r=0}^{n} r \binom{n}{r} x^r y^{n-r} = n x \] ### Step 4: Combine the results Now, we can combine the results of the two sums: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} x^r y^{n-r} = n(n-1)x^2 + nx \] Factoring out \( nx \): \[ = nx \left( (n-1)x + 1 \right) = nx(nx + y) \] Since \( y = 1 - x \): \[ = nx(1) = nx \] ### Final Result Thus, the final result is: \[ \sum_{r=0}^{n} r^2 \binom{n}{r} x^r y^{n-r} = nxy \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (1) (TRUE AND FALSE)|4 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (1) (FILL IN THE BLANKS)|3 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

If x+y= 1, then value of sum_(r=0)^(n)(r)(""^(n)C_(r))x^(n-r)y^(r) is

If x+y=1, then sum_(r-0)^(n)rnC_(r)x^(r)y^(n-r) equals

If x+y=1, prove that sum_(r=0)^(n)nC_(r)x^(r)y^(n-r)

If n in N, then sum_(r=0)^(n) (-1)^(r) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

sum_(r=0)^(n)((n-3r+1)^(n)C_(r))/((n-r+1)2^(r)) is equal to

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

ML KHANNA-BINOMIAL THEOREM AND MATHEMATICAL INDUCTION -Self Assessment Test
  1. If x+y=1, then sum(r=0)^(n)r^(2)""^(n)C(r )x^(r )y^(n-r) equals.

    Text Solution

    |

  2. If the coefficient of r^(th) term, (r+4)^(th) term are equal in the ...

    Text Solution

    |

  3. The coefficient of x^(4) in ((x)/(2)-(3)/(x^(2)))^(10) is :

    Text Solution

    |

  4. The coefficient of x^(-7) in the expansion of (ax-(1)/(bx^(2)))^(11) w...

    Text Solution

    |

  5. If the coefficient of x^(7) and x^(8) in (2+(x)/(3))^(n) are equal, th...

    Text Solution

    |

  6. The coefficient of x^(4) in the expansion of (1+x+x^(2)+x^(3))^(n) is

    Text Solution

    |

  7. The greatest coefficient in the expansion of (1+ x)^(2n +1) is

    Text Solution

    |

  8. The position of the term independent of x in the expansion of (sqrt((x...

    Text Solution

    |

  9. In the expansion of (x+(2)/(x^(2)))^(15) , the term independent of x ...

    Text Solution

    |

  10. The term independent of x in the expansion of (x^(2)-(1)/(3x))^(9) is

    Text Solution

    |

  11. If (1+ x)^(n) = C(0) + C(1) x + C(2)x^(2) + ...+ C(n)x^(n) , prove tha...

    Text Solution

    |

  12. If C(0), C(1), C(2),.....,C(n) are binomial coefficients, (where C(r) ...

    Text Solution

    |

  13. If (1+x-2x^2)^6=1+a1x+a2x^(12)++a(12)x^(12), then find the value of a2...

    Text Solution

    |

  14. If (1 + x)^(n) = C(0) + C(1) x + C(2) x^(2) +… + C(n) x^(n) , prove th...

    Text Solution

    |

  15. The coefficient of x^(n) in the expansion of (1-9 x + 20 x^(2))^(-1...

    Text Solution

    |

  16. The number of integer terms in the expansion of (5^(1//2)+7^(1//6))^(...

    Text Solution

    |

  17. Find the coefficient of x^5 in the expansion of (1+x^2)^5dot(1+x)^4i s...

    Text Solution

    |

  18. Consider the expansion of ( 1+ x)^(2n+1) The coefficient of x^(99) ...

    Text Solution

    |

  19. If the coefficient of x^(7) in (ax^(2)+(1)/(bx))^(11) is equal to the ...

    Text Solution

    |

  20. The sum of the coefficeints of the polynominal (1 + x - 3x^(2))^(2163)...

    Text Solution

    |

  21. Sum of coefficients in the expansion of (x+2y+z)^(10) is

    Text Solution

    |