Home
Class 12
MATHS
If (1+x)^(n) =C(0) +C(1)x +C(2)x^(2) +…+...

If `(1+x)^(n) =C_(0) +C_(1)x +C_(2)x^(2) +…+C_(n)x^(n)`, then `C_(0) +3C_(1) +5C_(2)+ ….+ (2n+1)C_(n)=`

A

`n.2^(n-1)`

B

`n.2^(n)`

C

`(n+1) 2^(n)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( C_0 + 3C_1 + 5C_2 + \ldots + (2n+1)C_n \) where \( (1+x)^n = C_0 + C_1 x + C_2 x^2 + \ldots + C_n x^n \), we will follow these steps: ### Step 1: Substitute \( x \) with \( y^2 \) and multiply by \( y \) We start by substituting \( x \) with \( y^2 \) in the binomial expansion: \[ (1 + y^2)^n = C_0 + C_1 y^2 + C_2 y^4 + \ldots + C_n y^{2n} \] Now, multiply the entire equation by \( y \): \[ y(1 + y^2)^n = C_0 y + C_1 y^3 + C_2 y^5 + \ldots + C_n y^{2n + 1} \] ### Step 2: Differentiate both sides with respect to \( y \) Next, we differentiate both sides with respect to \( y \): \[ \frac{d}{dy} \left[ y(1 + y^2)^n \right] = \frac{d}{dy} \left[ C_0 y + C_1 y^3 + C_2 y^5 + \ldots + C_n y^{2n + 1} \right] \] Using the product rule on the left side, we get: \[ (1 + y^2)^n + y \cdot n(1 + y^2)^{n-1} \cdot 2y = C_0 + 3C_1 y^2 + 5C_2 y^4 + \ldots + (2n + 1)C_n y^{2n} \] This simplifies to: \[ (1 + y^2)^n + 2ny^2(1 + y^2)^{n-1} = C_0 + 3C_1 y^2 + 5C_2 y^4 + \ldots + (2n + 1)C_n y^{2n} \] ### Step 3: Set \( y = 1 \) Now, we substitute \( y = 1 \): \[ (1 + 1^2)^n + 2n(1^2)(1 + 1^2)^{n-1} = C_0 + 3C_1 + 5C_2 + \ldots + (2n + 1)C_n \] This gives us: \[ 2^n + 2n \cdot 1 \cdot 2^{n-1} = C_0 + 3C_1 + 5C_2 + \ldots + (2n + 1)C_n \] ### Step 4: Simplify the expression Simplifying the left side: \[ 2^n + 2n \cdot 2^{n-1} = 2^n + n \cdot 2^n = (1 + n) \cdot 2^n \] ### Final Result Thus, we find that: \[ C_0 + 3C_1 + 5C_2 + \ldots + (2n + 1)C_n = (n + 1) \cdot 2^n \] ### Summary The final result is: \[ C_0 + 3C_1 + 5C_2 + \ldots + (2n + 1)C_n = (n + 1) \cdot 2^n \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (Assertion/Reason) |1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |11 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |12 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0) C_(n) - C_(1) C_(n-1) + C_(2) C_(n-2) - …+ (-1)^(n) C_(n) C_(0) = 0 or (-1)^(n//2) (n!)/((n//2)!(n//2)!) , according as n is odd or even .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) +… + C_(n) x^(n) , prove that C_(0) + 2C_(1) + 3C_(2) + …+ (n+1)C_(n) = (n+2)2^(n-1) .

If (1 + x)^(n) = C_(0) + C_(1) x C_(2) x^(2) +…+ C_(n) x^(n) , then the sum C_(0) + (C_(0)+C_(1))+…+(C_(0) +C_(1) +…+C_(n -1)) is equal to

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) + C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .

If (1 + x)^(n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(n) x^(n) , then for n odd, C_(1)^(2) + C_(3)^(2) + C_(5)^(2) +....+ C_(n)^(2) is equal to

ML KHANNA-BINOMIAL THEOREM AND MATHEMATICAL INDUCTION -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. C(0) -(C(1))/(2)+(C(2))/(3) -(C(3))/(4) + ….=

    Text Solution

    |

  2. If (1+x)^(15)=C0+C1x+C2x^2++C(15)x^(15), then find the su of C1+2C3+3C...

    Text Solution

    |

  3. If (1+x)^(n) =C(0) +C(1)x +C(2)x^(2) +…+C(n)x^(n), then C(0) +3C(1) +...

    Text Solution

    |

  4. sum(r=1)^(n) r.""^(2n)C(r )=

    Text Solution

    |

  5. ""^(16)C(1)-2""^(16)C(2)+3""^(16)C(3)…. - 16""^(16)C(16)=

    Text Solution

    |

  6. (1)/(n!) +(1)/(2!(n-2)!) +(1)/(4!(n-4)!) +... is equal to

    Text Solution

    |

  7. sum(r=1)^(n//2) (1)/((2r-1)! (n+1-2r)!)=

    Text Solution

    |

  8. The value of ""^(14)C(1) +""^(14)C(3) +""^(14)C(5) + …+""^(14)C(11) is

    Text Solution

    |

  9. If A=C(0) -C(2) +C(4)… and B=C(1)-C(3)+C(5)… then (B)/(A)=

    Text Solution

    |

  10. In the expansion of ( 1+ x)^(50), the sum of the coefficient of odd po...

    Text Solution

    |

  11. Find the sum of the coefficients of all the integral powers of x in th...

    Text Solution

    |

  12. The value of ""^(13)C(2) +""^(13)C(3) +""^(13)C(4) +…+""^(13)C(13) is

    Text Solution

    |

  13. The sum of last ten coefficients in the expansion of (1+x)^(19) when ...

    Text Solution

    |

  14. If S=(1)/(2) ""^(10)C(0) -""^(10)C(1) +2""^(10)C(2)-2^(2)" "^(10)C(3)…...

    Text Solution

    |

  15. If (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r),(1 + (C(1))/(C(0))) (1 + (C(...

    Text Solution

    |

  16. Let (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r) and , (C(1))/(C(0)) + 2 (...

    Text Solution

    |

  17. The value of sum(r=1)^(10) r. (""^(n)C(r))/(""^(n)C(r-1) is equal to

    Text Solution

    |

  18. If P(n) denotes the product of the binomial coefficients in the expan...

    Text Solution

    |

  19. If C(0), C(1), C(2), ..., C(n) denote the binomial cefficients in t...

    Text Solution

    |

  20. If C(0), C(1), C(2), …. C(n) denote the coefficients in the expansion ...

    Text Solution

    |