Home
Class 12
MATHS
The value of ""^(14)C(1) +""^(14)C(3) +"...

The value of `""^(14)C_(1) +""^(14)C_(3) +""^(14)C_(5) + …+""^(14)C_(11)` is

A

`2^(14)-1`

B

`2^(14)-14`

C

`2^(12)`

D

`2^(13)-14`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \binom{14}{1} + \binom{14}{3} + \binom{14}{5} + \ldots + \binom{14}{11} \), we can use properties of binomial coefficients and the binomial theorem. ### Step-by-Step Solution: 1. **Understanding the Sum of Binomial Coefficients**: The sum of all binomial coefficients for a given \( n \) is given by: \[ \sum_{k=0}^{n} \binom{n}{k} = 2^n \] For \( n = 14 \): \[ \sum_{k=0}^{14} \binom{14}{k} = 2^{14} \] 2. **Separating Even and Odd Coefficients**: The sum of the coefficients for even \( k \) and odd \( k \) can be expressed as: \[ \sum_{k \text{ even}} \binom{n}{k} + \sum_{k \text{ odd}} \binom{n}{k} = 2^n \] Since the sum of the even coefficients equals the sum of the odd coefficients, we can denote: \[ \sum_{k \text{ even}} \binom{14}{k} = \sum_{k \text{ odd}} \binom{14}{k} = \frac{2^{14}}{2} = 2^{13} \] 3. **Finding the Required Sum**: The sum we need is: \[ \sum_{k \text{ odd}} \binom{14}{k} = \binom{14}{1} + \binom{14}{3} + \binom{14}{5} + \ldots + \binom{14}{11} \] This sum includes all odd coefficients from \( \binom{14}{1} \) to \( \binom{14}{13} \). We can express it as: \[ \sum_{k \text{ odd}} \binom{14}{k} = \binom{14}{1} + \binom{14}{3} + \binom{14}{5} + \binom{14}{7} + \binom{14}{9} + \binom{14}{11} + \binom{14}{13} \] 4. **Calculating the Last Term**: We need to find \( \binom{14}{13} \): \[ \binom{14}{13} = \binom{14}{1} = 14 \] Thus, we can rewrite the sum of odd coefficients as: \[ \sum_{k \text{ odd}} \binom{14}{k} = \left( \binom{14}{1} + \binom{14}{3} + \binom{14}{5} + \binom{14}{7} + \binom{14}{9} + \binom{14}{11} \right) + 14 \] 5. **Final Calculation**: Since we know that the total sum of odd coefficients equals \( 2^{13} \): \[ \sum_{k \text{ odd}} \binom{14}{k} = 8192 \] Therefore, we can find: \[ \sum_{k \text{ odd}} \binom{14}{k} - \binom{14}{13} = 8192 - 14 = 8178 \] ### Conclusion: Thus, the value of \( \binom{14}{1} + \binom{14}{3} + \binom{14}{5} + \ldots + \binom{14}{11} \) is: \[ \boxed{8178} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (Assertion/Reason) |1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |11 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |12 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

Value of -^(15)C_(1) + 2..^(15)C_(2)- 3.^(15)C_(3) + ...... - 15.^(15)C_(15)+ ^(15)C_(1)+ ^(15)C_(2)+ ....^(15)C_(14) is

Half life of .^(14)C is

The t_(1//2) for .^(14)C in (i) .^(14)CO_(2) , (ii) .^(14)C_(6)H_(12)O_(6) , (iii) Coal containing .^(14)C , (iv) Cellulose conatining .^(14)C os:

ML KHANNA-BINOMIAL THEOREM AND MATHEMATICAL INDUCTION -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. (1)/(n!) +(1)/(2!(n-2)!) +(1)/(4!(n-4)!) +... is equal to

    Text Solution

    |

  2. sum(r=1)^(n//2) (1)/((2r-1)! (n+1-2r)!)=

    Text Solution

    |

  3. The value of ""^(14)C(1) +""^(14)C(3) +""^(14)C(5) + …+""^(14)C(11) is

    Text Solution

    |

  4. If A=C(0) -C(2) +C(4)… and B=C(1)-C(3)+C(5)… then (B)/(A)=

    Text Solution

    |

  5. In the expansion of ( 1+ x)^(50), the sum of the coefficient of odd po...

    Text Solution

    |

  6. Find the sum of the coefficients of all the integral powers of x in th...

    Text Solution

    |

  7. The value of ""^(13)C(2) +""^(13)C(3) +""^(13)C(4) +…+""^(13)C(13) is

    Text Solution

    |

  8. The sum of last ten coefficients in the expansion of (1+x)^(19) when ...

    Text Solution

    |

  9. If S=(1)/(2) ""^(10)C(0) -""^(10)C(1) +2""^(10)C(2)-2^(2)" "^(10)C(3)…...

    Text Solution

    |

  10. If (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r),(1 + (C(1))/(C(0))) (1 + (C(...

    Text Solution

    |

  11. Let (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r) and , (C(1))/(C(0)) + 2 (...

    Text Solution

    |

  12. The value of sum(r=1)^(10) r. (""^(n)C(r))/(""^(n)C(r-1) is equal to

    Text Solution

    |

  13. If P(n) denotes the product of the binomial coefficients in the expan...

    Text Solution

    |

  14. If C(0), C(1), C(2), ..., C(n) denote the binomial cefficients in t...

    Text Solution

    |

  15. If C(0), C(1), C(2), …. C(n) denote the coefficients in the expansion ...

    Text Solution

    |

  16. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  17. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+…+C(n)x^(n), then C(0)+5C(1)+9C(2)+...

    Text Solution

    |

  18. If (1+x)^(n)= sum(r=0)^(n)C(r )x^(r ) and sum(r =0)^(n) (C(r ))/(r+1)=...

    Text Solution

    |

  19. If (1+x)^(n)=sum(r=0)^(n)*C(r )x^(r ) and sum(r=0)^(n) (-1)^(r ) (C(r ...

    Text Solution

    |

  20. The sum of the series .^(20)C(0)-.^(20)C(1)+ .^(20)C(2)-.^(20)C(3)+...

    Text Solution

    |