Home
Class 12
MATHS
If A=C(0) -C(2) +C(4)… and B=C(1)-C(3)+...

If `A=C_(0) -C_(2) +C_(4)…` and `B=C_(1)-C_(3)+C_(5)…` then `(B)/(A)=`

A

`"tan"(n pi)/(4)`

B

`"cot"(n pi)/(4)`

C

`"sec"(n pi)/(4)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( \frac{B}{A} \) where: - \( A = C_0 - C_2 + C_4 - C_6 + \ldots \) - \( B = C_1 - C_3 + C_5 - C_7 + \ldots \) ### Step-by-Step Solution: 1. **Understanding the Binomial Coefficients**: The coefficients \( C_k \) represent the binomial coefficients from the expansion of \( (1 + x)^n \). Specifically, \( C_k = \binom{n}{k} \). 2. **Using Binomial Expansion**: We can express \( (1 + x)^n \) using the binomial theorem: \[ (1 + x)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + C_4 x^4 + \ldots + C_n x^n \] 3. **Substituting \( x = i \) (the imaginary unit)**: By substituting \( x = i \), we get: \[ (1 + i)^n = C_0 + C_1 i + C_2 i^2 + C_3 i^3 + C_4 i^4 + \ldots + C_n i^n \] Here, \( i^2 = -1 \), \( i^3 = -i \), and \( i^4 = 1 \). 4. **Separating Real and Imaginary Parts**: The real part of \( (1 + i)^n \) will give us \( A \) and the imaginary part will give us \( B \): \[ A + iB = (1 + i)^n \] 5. **Calculating \( (1 + i)^n \)**: We can express \( 1 + i \) in polar form: \[ 1 + i = \sqrt{2} \left( \cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) \] Therefore, \[ (1 + i)^n = (\sqrt{2})^n \left( \cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right) = 2^{n/2} \left( \cos \frac{n\pi}{4} + i \sin \frac{n\pi}{4} \right) \] 6. **Identifying \( A \) and \( B \)**: From the above expression, we can identify: \[ A = 2^{n/2} \cos \frac{n\pi}{4} \] \[ B = 2^{n/2} \sin \frac{n\pi}{4} \] 7. **Finding the Ratio \( \frac{B}{A} \)**: Now, we can find the ratio: \[ \frac{B}{A} = \frac{2^{n/2} \sin \frac{n\pi}{4}}{2^{n/2} \cos \frac{n\pi}{4}} = \frac{\sin \frac{n\pi}{4}}{\cos \frac{n\pi}{4}} = \tan \frac{n\pi}{4} \] ### Final Answer: \[ \frac{B}{A} = \tan \frac{n\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (Assertion/Reason) |1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |11 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |12 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

C_(0)C_(2)+C_(1)C_(3)+C_(2)C_(4)+c_(3)C_(5)+...+C_(n-2)C_(n)

If C_(0)+C_(1)+C_(2)+......+C_(n)=128 then C_(0)-(C_(1))/(2)+(C_(2))/(3)-(C_(3))/(4)+.....=

If C_(0)+C_(1)+C_(2)+......+C_(n)=128 then C_(0)-(C_(1))/(2)+(C_(2))/(3)-(C_(3))/(4)+......=

(C_(0)-C_(2)+C_(4)-C_(6)......)^(2)+(C_(1)-C_(3)+C_(5)-C_(7).........)^(2)=2^(n)

If C_(0), C_(1), C_(2),C_(3),..., C_(n) are the binomial coefficients in the expansion of (C_(0))/(1)+(C_(2))/(3)+(C_(4))/(5)+(C_(6))/(7)+..., is equal to

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is

Consider the system of equations a_(1) x + b_(1) y + c_(1) z = 0 a_(2) x + b_(2) y + c_(2) z = 0 a_(3) x + b_(3) y + c_(3) z = 0 If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =0 , then the system has

ML KHANNA-BINOMIAL THEOREM AND MATHEMATICAL INDUCTION -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. sum(r=1)^(n//2) (1)/((2r-1)! (n+1-2r)!)=

    Text Solution

    |

  2. The value of ""^(14)C(1) +""^(14)C(3) +""^(14)C(5) + …+""^(14)C(11) is

    Text Solution

    |

  3. If A=C(0) -C(2) +C(4)… and B=C(1)-C(3)+C(5)… then (B)/(A)=

    Text Solution

    |

  4. In the expansion of ( 1+ x)^(50), the sum of the coefficient of odd po...

    Text Solution

    |

  5. Find the sum of the coefficients of all the integral powers of x in th...

    Text Solution

    |

  6. The value of ""^(13)C(2) +""^(13)C(3) +""^(13)C(4) +…+""^(13)C(13) is

    Text Solution

    |

  7. The sum of last ten coefficients in the expansion of (1+x)^(19) when ...

    Text Solution

    |

  8. If S=(1)/(2) ""^(10)C(0) -""^(10)C(1) +2""^(10)C(2)-2^(2)" "^(10)C(3)…...

    Text Solution

    |

  9. If (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r),(1 + (C(1))/(C(0))) (1 + (C(...

    Text Solution

    |

  10. Let (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r) and , (C(1))/(C(0)) + 2 (...

    Text Solution

    |

  11. The value of sum(r=1)^(10) r. (""^(n)C(r))/(""^(n)C(r-1) is equal to

    Text Solution

    |

  12. If P(n) denotes the product of the binomial coefficients in the expan...

    Text Solution

    |

  13. If C(0), C(1), C(2), ..., C(n) denote the binomial cefficients in t...

    Text Solution

    |

  14. If C(0), C(1), C(2), …. C(n) denote the coefficients in the expansion ...

    Text Solution

    |

  15. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  16. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+…+C(n)x^(n), then C(0)+5C(1)+9C(2)+...

    Text Solution

    |

  17. If (1+x)^(n)= sum(r=0)^(n)C(r )x^(r ) and sum(r =0)^(n) (C(r ))/(r+1)=...

    Text Solution

    |

  18. If (1+x)^(n)=sum(r=0)^(n)*C(r )x^(r ) and sum(r=0)^(n) (-1)^(r ) (C(r ...

    Text Solution

    |

  19. The sum of the series .^(20)C(0)-.^(20)C(1)+ .^(20)C(2)-.^(20)C(3)+...

    Text Solution

    |

  20. The sum to (n+1) terms of the series (C(0))/(2)-(C(1))/(3)+(C(2))/(...

    Text Solution

    |