Home
Class 12
MATHS
The value of ""^(13)C(2) +""^(13)C(3) +"...

The value of `""^(13)C_(2) +""^(13)C_(3) +""^(13)C_(4) +…+""^(13)C_(13)` is

A

`2^(13)-13`

B

`2^(13)-14`

C

an odd number `ne 2^(13)-12`

D

an even number `ne 2^(13)-14`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \binom{13}{2} + \binom{13}{3} + \binom{13}{4} + \ldots + \binom{13}{13} \), we can use the properties of binomial coefficients. ### Step-by-Step Solution: 1. **Understanding the Binomial Theorem**: The binomial theorem states that: \[ (x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{n-k} y^k \] For \( x = 1 \) and \( y = 1 \), we have: \[ (1 + 1)^{13} = \sum_{k=0}^{13} \binom{13}{k} = 2^{13} \] 2. **Calculating Total Sum of Coefficients**: From the above, we know: \[ \sum_{k=0}^{13} \binom{13}{k} = 2^{13} = 8192 \] 3. **Separating the Required Terms**: We need to find: \[ \sum_{k=2}^{13} \binom{13}{k} = \sum_{k=0}^{13} \binom{13}{k} - \binom{13}{0} - \binom{13}{1} \] 4. **Calculating \( \binom{13}{0} \) and \( \binom{13}{1} \)**: - \( \binom{13}{0} = 1 \) - \( \binom{13}{1} = 13 \) 5. **Substituting Values**: Now substitute these values into the equation: \[ \sum_{k=2}^{13} \binom{13}{k} = 8192 - 1 - 13 = 8192 - 14 = 8178 \] 6. **Final Result**: Therefore, the value of \( \binom{13}{2} + \binom{13}{3} + \binom{13}{4} + \ldots + \binom{13}{13} \) is: \[ \boxed{8178} \]
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (Assertion/Reason) |1 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (4) (TRUE AND FALSE) |11 Videos
  • BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

    ML KHANNA|Exercise Problem Set (3) (MULTIPLE CHOICE QUESTIONS) |12 Videos
  • AREA OF CURVES

    ML KHANNA|Exercise SELF ASSESSEMENT TEST|16 Videos
  • CO-ORDINATE GEOMETRY OF THREE DIMENSION

    ML KHANNA|Exercise SELF ASSIGNMENT TEST |11 Videos

Similar Questions

Explore conceptually related problems

Evaluate : ""^(13)C_(10)

Evaluate (i) ""^(10)C_(4)+""^(10)C_(5) (ii) ""^(13)C_(6)+ ""^(13)C_(5) (iii) ""^(19)C_(17)+ ""^(19)C_(18) .

The value of .^(13)C_(7)+.^(13)C_(8)+.^(13)C_(9)+.^(13)C_(10)+.^(13)C_(11)+.^(13)C_(12)+.^(13)C_(13) is equal to

""^(26)C_(0)+""^(26)C_(1)+""^(26)C_(2)+…..+""^(26)C_(13) is equal to :

If 3 cards are drawn from a pack of 52 cards at random, then the probability of getting 2 cards from one suit and one card from another suit is (A) (^(4)C_(2)times^(13)C_(2)times^(13)C_(1))/(^(52)C_(3)) (B) (^(4)P_(2)times^(13)C_(2)times^(13)C_(1))/(^(52)C_(3)) (C) (1^(13)C_(2)times^(13)C_(1))/(^(52)C_(3)) (D) (1^(13)C_(2)times^(13)C_(1))/(^(52)C_(3))

The value of "2sin"^(2)(pi)/(3)-"cos"^(2)(pi)/(6)+"tan"^(2)(pi)/(6) is equal to A. 7/12 B. 13/12 C. 13/4 D.- 13/12

The value of .^(20)C_(10)+.^(20)C_(1)+.^(20)C_(2)+.^(20)C_(3)+.^(20)C_(4)+.^(20)C_(12)+.^(20)C_(13)+.^(20)C_(14)+.^(20)C_(15) is

The value of 2"cos"(pi)/(13)"cos"(9pi)/(13)+"cos"(3pi)/(13)+"cos"(5pi)/(13) is

ML KHANNA-BINOMIAL THEOREM AND MATHEMATICAL INDUCTION -Problem Set (4) (MULTIPLE CHOICE QUESTIONS)
  1. In the expansion of ( 1+ x)^(50), the sum of the coefficient of odd po...

    Text Solution

    |

  2. Find the sum of the coefficients of all the integral powers of x in th...

    Text Solution

    |

  3. The value of ""^(13)C(2) +""^(13)C(3) +""^(13)C(4) +…+""^(13)C(13) is

    Text Solution

    |

  4. The sum of last ten coefficients in the expansion of (1+x)^(19) when ...

    Text Solution

    |

  5. If S=(1)/(2) ""^(10)C(0) -""^(10)C(1) +2""^(10)C(2)-2^(2)" "^(10)C(3)…...

    Text Solution

    |

  6. If (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r),(1 + (C(1))/(C(0))) (1 + (C(...

    Text Solution

    |

  7. Let (1 + x)^(n) = sum(r=0)^(n) C(r) x^(r) and , (C(1))/(C(0)) + 2 (...

    Text Solution

    |

  8. The value of sum(r=1)^(10) r. (""^(n)C(r))/(""^(n)C(r-1) is equal to

    Text Solution

    |

  9. If P(n) denotes the product of the binomial coefficients in the expan...

    Text Solution

    |

  10. If C(0), C(1), C(2), ..., C(n) denote the binomial cefficients in t...

    Text Solution

    |

  11. If C(0), C(1), C(2), …. C(n) denote the coefficients in the expansion ...

    Text Solution

    |

  12. Statement-1: sum(r =0)^(n) (r +1)""^(n)C(r) = (n +2) 2^(n-1) Stat...

    Text Solution

    |

  13. If (1+x)^(n)=C(0)+C(1)x+C(2)x^(2)+…+C(n)x^(n), then C(0)+5C(1)+9C(2)+...

    Text Solution

    |

  14. If (1+x)^(n)= sum(r=0)^(n)C(r )x^(r ) and sum(r =0)^(n) (C(r ))/(r+1)=...

    Text Solution

    |

  15. If (1+x)^(n)=sum(r=0)^(n)*C(r )x^(r ) and sum(r=0)^(n) (-1)^(r ) (C(r ...

    Text Solution

    |

  16. The sum of the series .^(20)C(0)-.^(20)C(1)+ .^(20)C(2)-.^(20)C(3)+...

    Text Solution

    |

  17. The sum to (n+1) terms of the series (C(0))/(2)-(C(1))/(3)+(C(2))/(...

    Text Solution

    |

  18. If C(r ) stands for ""^(n)C(r ), then the sum of first (n+1) terms of...

    Text Solution

    |

  19. The value of the sum of the series 3.""^(n)C(0)-8" "^(n)C(1)+13" "^(n...

    Text Solution

    |

  20. If (1+x)^(n) = C(0)+C(1)x + C(2) x^(2) +...+C(n)x^(n) then C(0)""^...

    Text Solution

    |